# Broadcast domination and multipacking in graphs and digraphs 

Florent Foucaud (Université de Bordeaux, France)<br>joint works with:<br>Laurent Beaudou (Higher School of Economics, Moscow, Russia)<br>Richard C. Brewster<br>(Thompson Rivers University, Kamloops, BC, Canada)<br>Benjamin Gras<br>(Université d'Orléans, France)<br>Anthony Perez<br>(Université d'Orléans, France)<br>Florian Sikora<br>(Université Paris-Dauphine, France)

Toulouse, February 2020

## Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible
Example: dominating set: covering using 1-balls $\rightarrow$ domination number $\gamma(G)$


## Covering and packing: dual problems

Covering: cover the vertices of a graph using as few structures as possible Example: dominating set: covering using 1-balls $\rightarrow$ domination number $\gamma(G)$


Packing: pack as many structures as possible without interference
Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap $\rightarrow 2$-packing number $\rho_{2}(G)$


Covering: cover the vertices of a graph using as few structures as possible Example: dominating set: covering using 1-balls $\rightarrow$ domination number $\gamma(G)$


Packing: pack as many structures as possible without interference
Example: dist. 3-independent set / 2-packing: packing 1-balls without overlap $\rightarrow$ 2-packing number $\rho_{2}(G)$


These problems are dual (in the sense of LP) and $\rho_{2}(G) \leq \gamma(G)$.

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of $f$ is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$ : smallest cost of a dominating broadcast of $G$.


## Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of $f$ is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$ : smallest cost of a dominating broadcast of $G$.


## Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of $f$ is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$ : smallest cost of a dominating broadcast of $G$.


## Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of $f$ is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$ : smallest cost of a dominating broadcast of $G$.


## Broadcast domination

Definition - Dominating broadcast of graph G (Erwin, 2001)
A function $f: V(G) \rightarrow \mathbb{N}$ s.t. for every $v \in V(G)$, there exists $x \in V(G)$ with

- $f(x)>0$ and
- $f(x) \geq d_{G}(x, v)$.

The cost of $f$ is $\sum_{v \in V(G)} f(v)$.
Broadcast number $\gamma_{b}(G)$ : smallest cost of a dominating broadcast of $G$.


Theorem (Heggernes-Lokshtanov, 2006)
We can find a minimum-cost dominating broadcast in polynomial time $O\left(n^{6}\right)$.

## Proof idea:

- find an efficient dominating broadcast (Erwin, 2001)
- The structure of covering balls is a path or a cycle
- Dynamic programming on this structure


## Broadcast domination: ILP formulation

## Vertices: $v_{1}, \ldots, v_{n}$.

$x_{i, k} \in\{0,1\}$ : whether vertex $v_{i}$ broadcasts with radius $k$
We want to minimize:

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{i=1}^{n} k \cdot x_{i, k} \\
& \text { subject to: }
\end{aligned}
$$

$$
\sum_{d\left(v_{i}, v_{j}\right) \leq k} x_{i, k} \geq 1 \text { for each vertex } v_{j}
$$

Vertices: $v_{1}, \ldots, v_{n}$.
$x_{i, k} \in\{0,1\}$ : whether vertex $v_{i}$ broadcasts with radius $k$
We want to minimize:

$$
\sum_{k=1}^{n} \sum_{i=1}^{n} k \cdot x_{i, k}
$$

subject to:

$$
\sum_{d\left(v_{i}, v_{j}\right) \leq k} x_{i, k} \geq 1 \text { for each vertex } v_{j}
$$

## Dual ILP:

We want to maximize:

$$
\sum_{i=1}^{n} y_{i}
$$

subject to:

$$
\sum_{d\left(v_{i}, v_{j}\right) \leq k, y_{j} \geq 0} y_{i} \leq k \text { for each vertex } v_{j} \text { and integer } k \leq n
$$

Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)
A set $S$ of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the $d$-ball $B_{d}(v)$ contains at most $d$ vertices of $S$.

Multipacking number $\operatorname{mp}(G)$ : largest size of a multipacking of $G$.


Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)
A set $S$ of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the $d$-ball $B_{d}(v)$ contains at most $d$ vertices of $S$.

Multipacking number $\operatorname{mp}(G)$ : largest size of a multipacking of $G$.


## Definition - Multipacking of graph G (Brewster-Mynhardt-Teshima, 2014)

A set $S$ of vertices s.t. for every $v \in V(G)$ and every $d \in \mathbb{N}$, the $d$-ball $B_{d}(v)$ contains at most $d$ vertices of $S$.

Multipacking number $\operatorname{mp}(G)$ : largest size of a multipacking of $G$.


## Bounds for undirected graphs

The two problems are dual (in the sense of LP). Proposition

For every graph $G$, we have $m p(G) \leq \gamma_{b}(G)$.

Equality holds for:

- trees (Mynhardt-Teshima, 2017)
- more generally, strongly chordal graphs (Brewster-MacGillivray-Yang, 2019)
- square grids (Beaudou-Brewster, 2018)

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)
For any $\operatorname{graph} G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)$.

Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)
For any graph $G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)$.
$\gamma_{b}(G) \leq \operatorname{rad}(G):$ consider a radial vertex $v$. Set $f(v)=\operatorname{rad}(G)$.


Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)
For any graph $G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)$.
$\left\lceil\frac{\operatorname{diam}(G)+\boldsymbol{1}}{3}\right\rceil \leq m p(G):$ consider a diametral path $P$, select every third vertex.


Proposition (Erwin, 2001 + Hartnell-Mynhardt, 2014)
For any graph $G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq m p(G) \leq \gamma_{b}(G) \leq \operatorname{rad}(G) \leq \operatorname{diam}(G)$.

Corollary
For any graph $G$, we have $\gamma_{b}(G)<3 m p(G)$, hence $\frac{\gamma_{b}(G)}{m p(G)}<3$.

Question (Hartnell-Mynhardt, 2014)
What is the largest possible ratio $\frac{\gamma_{b}(G)}{m p(G)}$ ?
res

[^0]

$\qquad$
$\qquad$
號


$\qquad$



## Our theorem

Theorem (Beaudou, Brewster, F., 2018)
For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)+3$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

## Lemma

## Proof sketch

Let $u, v, x, y$ be 4 vertices with:

- $d(u, v)=6 k \quad \bullet d(x, u)=d(x, v)=3 k \quad \bullet d(x, y)=3 k+3 \ell$.

Then, $m p(G) \geq 2 k+\ell$.


## Our theorem

Theorem (Beaudou, Brewster, F., 2018)
For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)+3$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

## Lemma

## Proof sketch

Let $u, v, x, y$ be 4 vertices with:
$\bullet d(u, v)=6 k \quad \bullet d(x, u)=d(x, v)=3 k \quad \bullet d(x, y)=3 k+3 \ell$.
Then, $m p(G) \geq 2 k+\ell$.

Let $\operatorname{diam}(G)=6 k+i$ and $\operatorname{rad}(G)=3 k+3 \ell+j$

$$
(0 \leq i<6 \text { and } 0 \leq j<3)
$$

Apply the lemma with $x$, a vertex of eccentricity $\operatorname{rad}(G)$.

$$
\begin{aligned}
m p(G) & \geq 2 k+\ell \\
& \geq \frac{\operatorname{diam}(G)}{3}+\frac{\operatorname{rad}(G)}{3}-\frac{\operatorname{diam}(G)}{6}-c \\
& \geq \frac{\operatorname{rad}(G)}{2}-c \\
& \geq \frac{\gamma_{b}(G)}{2}-c
\end{aligned}
$$

## Conjecture

Theorem (Beaudou, Brewster, F., 2018)
For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)+3$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

## Conjecture

For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.


## Conjecture

Theorem (Beaudou, Brewster, F., 2018)
For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)+3$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

## Conjecture

For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Theorem (Beaudou, Brewster, F., 2018)
The conjecture is true when $m p(G) \leq 4$.

Theorem (Beaudou, Brewster, F., 2018)
For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)+3$, hence $\frac{\gamma_{b}(G)}{m p(G)} \leq 2+\epsilon$.

## Conjecture

For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.

Theorem (Beaudou, Brewster, F., 2018)
The conjecture is true when $m p(G) \leq 4$.

Conjecture would be tight - infinitely many graphs $G$ s.t. $\gamma_{b}(G)=2 m p(G)$ :

$m p(G)=2$ and $\gamma_{b}(G)=4$ For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$. What happens for connected graphs?

## Conjecture

For any graph
$\qquad$ Broadcast domination and multipacking

For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.

## Question

## What happens for connected graphs?

Closest known connected family: $\gamma_{b}(G)=\frac{4}{3} m p(G)$
(Hartnell-Mynhardt, 2014)


For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.

## Question

## What happens for connected graphs?

Closest known connected family: $\gamma_{b}(G)=\frac{4}{3} m p(G)$
(Hartnell-Mynhardt, 2014)


For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.

## Question

## What happens for connected graphs?

Closest known connected family: $\gamma_{b}(G)=\frac{4}{3} m p(G)$
(Hartnell-Mynhardt, 2014)


## Connected graphs, small case

Conjecture
For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.

## Question

What happens for connected graphs?

## Proposition

There is a connected graph $G$ of order 24 with $m p(G)=3$ and $\gamma_{b}(G)=5$.


## Connected graphs, small case

## Conjecture

For any graph $G$, we have $\gamma_{b}(G) \leq 2 m p(G)$.

## Question

## What happens for connected graphs?

## Proposition

There is a connected graph $G$ of order 24 with $m p(G)=3$ and $\gamma_{b}(G)=5$.


## Question

Is there a connected graph $G$ with $m p(G)=3$ and $\gamma_{b}(G)=6$ ?

## Complexity \& algorithms for directed graphs

Broadcast domination in directed graphs



Note: an undirected graph can be seen as a symmetric directed graph!


Broadcast domination for directed graphs:

A vertex $v$ with $f(v)=r$ broadcasts to all vertices at directed distance up to $r$.

## Complexity of Broadcast domination

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a dominating broadcast of cost at most $k$ ?
Theorem (Heggernes-Lokshtanov, 2006)
BROADCAST DOM can be solved in polynomial time $O\left(n^{6}\right)$ for undirected graphs.

## Complexity of Broadcast domination

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a dominating broadcast of cost at most $k$ ?
Theorem (Heggernes-Lokshtanov, 2006)
BROADCAST DOM can be solved in polynomial time $O\left(n^{6}\right)$ for undirected graphs.

Theorem (F., Gras, Perez, Sikora, 2019)
BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form $f(k)$ poly $(n)$, for any computable function $f$.

Proof: Reductions from SET COVER.


## Complexity for BROADCAST DOM (2)

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a dominating broadcast of cost at most $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form $f(k)$ poly $(n)$, for any computable function $f$.

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a dominating broadcast of cost at most $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form $f(k) p o l y(n)$, for any computable function $f$.

Theorem (F., Gras, Perez, Sikora, 2019)
There is an $O\left(c^{k} n\right)$-time algorithm for BROADCAST DOM for directed acyclic graphs.

## Proof:

Lemma: There always exists an optimal broadcast where each broadcasting vertex is covered only by itself.
$\rightarrow$ iterative branching, starting from the sources.

## Complexity for BROADCAST DOM (3)

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a dominating broadcast of cost at most $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form $f(k) p o l y(n)$, for any computable function $f$.

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a dominating broadcast of cost at most $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form $f(k) p o l y(n)$, for any computable function $f$.

Theorem (F., Gras, Perez, Sikora, 2019)
There is a linear-time algorithm for BROADCAST DOM on single-source layered directed graphs.

## Proof:

Lemma: there always exists an optimal broadcast where the broadcasting vertices are all in layers of size 1, and no vertex is covered twice.
$\rightarrow$ Easy top-down procedure.

## Complexity for BROADCAST DOM (4)

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$. Question: Does $G$ have a dominating broadcast of cost at most $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form $f(k)$ poly $(n)$, for any computable function $f$.

## BROADCAST DOM

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a dominating broadcast of cost at most $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
BROADCAST DOM is NP-hard and W[2]-hard: likely no algorithm of the form $f(k)$ poly $(n)$, for any computable function $f$.

## Theorem (F., Gras, Perez, Sikora, 2019)

BROADCAST DOM is FPT parameterizd by solution cost $k$ and maximum degree d.

Proof:
A YES-instance has at most $k(k+1) d^{k}$ vertices.

## Complexity of Multipacking

## MULTIPACKING

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a multipacking of size at least $k$ ?
(Note: OPEN for undirected graphs.)

## MULTIPACKING

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a multipacking of size at least $k$ ?
(Note: OPEN for undirected graphs.)

Theorem (F., Gras, Perez, Sikora, 2019)
MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form $f(k) p o l y(n)$, for any computable function $f$.

Proof: Reduction from INDEPENDENT SET.


## Complexity of Multipacking (2)

## MULTIPACKING

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a multipacking of size at least $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form $f(k)$ poly $(n)$, for any computable function $f$.

## Complexity of Multipacking (2)

## MULTIPACKING

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a multipacking of size at least $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
MULTIPACKING is NP-hard and $W[1]$-hard: likely no algorithm of the form $f(k) p o l y(n)$, for any computable function $f$.

```
Theorem (F., Gras, Perez, Sikora, 2019)
```

There is a linear-time algorithm for MULTIPACKING on single-source layered directed graphs.

Proof:
Lemma: There always exists an optimal multipacking that intersects each layer at most once.
$\rightarrow$ Bottom-up dynamic programming.

## Complexity of Multipacking (3)

## MULTIPACKING

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a multipacking of size at least $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form $f(k)$ poly $(n)$, for any computable function $f$.

## Complexity of Multipacking (3)

## MULTIPACKING

Input: A (directed) graph $G$, an integer $k$.
Question: Does $G$ have a multipacking of size at least $k$ ?

Theorem (F., Gras, Perez, Sikora, 2019)
MULTIPACKING is NP-hard and W[1]-hard: likely no algorithm of the form $f(k)$ poly $(n)$, for any computable function $f$.

Theorem (F., Gras, Perez, Sikora, 2019)
MULTIPACKING is FPT parameterizd by solution cost $k$ and maximum degree $d$.

## Proof:

If $G$ has a path of length $3 k-3$ : return YES.
If there is a minimum absorbing set of size $k$ (computable by reduction to HITTING SET): return YES.

Otherwise: the instance has at most $d^{O(k)}$ vertices.


BROADCAST DOM


MULTIPACKING

## Bounds:

- Is the conjecture true that for any undirected graph $G, \gamma_{b}(G) \leq 2 m p(G)$ ?
-What is a tight bound for connected undirected graphs? $\gamma_{b}(G) \leq \frac{4}{3} m p(G)$ ?
- What about directed graphs?

Complexity:

- Is MULTIPACKING NP-hard on undirected graphs?
- Complexity of both problems on oriented trees?

Bounds:

- Is the conjecture true that for any undirected graph $G, \gamma_{b}(G) \leq 2 m p(G)$ ?
- What is a tight bound for connected undirected graphs? $\gamma_{b}(G) \leq \frac{4}{3} m p(G)$ ?
- What about directed graphs?

Complexity:

- Is MULTIPACKING NP-hard on undirected graphs?
- Complexity of both problems on oriented trees?


## Thanks!


[^0]:    
    $\square$

