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a b s t r a c t

The Grundy number of a graph is the maximum number of colors used by the greedy
coloring algorithm over all vertex orderings. In this paper, we study the computational
complexity of Grundy Coloring, the problem of determining whether a given graph has
Grundy number at least k. We also study the variants Weak Grundy Coloring (where the
coloring is not necessarily proper) and Connected Grundy Coloring (where at each step
of the greedy coloring algorithm, the subgraph induced by the colored vertices must be
connected).

We show that Grundy Coloring can be solved in time O∗(2.443n) and Weak Grundy
Coloring in time O∗(2.716n) on graphs of order n. While Grundy Coloring and Weak
Grundy Coloring are known to be solvable in time O∗(2O(wk)) for graphs of treewidth w
(where k is the number of colors), we prove that under the Exponential Time Hypothesis
(ETH), they cannot be solved in time O∗(2o(w logw)). We also describe an O∗(22O(k) ) algorithm
for Weak Grundy Coloring, which is therefore FPT for the parameter k. Moreover, under
the ETH, we prove that such a running time is essentially optimal (this lower bound also
holds for Grundy Coloring). Although we do not know whether Grundy Coloring is in
FPT, we show that this is the case for graphs belonging to a number of standard graph
classes including chordal graphs, claw-free graphs, and graphs excluding a fixedminor.We
also describe a quasi-polynomial time algorithm for Grundy Coloring andWeak Grundy
Coloring on apex-minor graphs. In stark contrast with the two other problems, we show
that Connected Grundy Coloring is NP-complete already for k = 7 colors.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A k-coloring of a graph G is a surjective mapping ϕ : V (G) → {1, . . . , k} (we say that vertex v is colored with ϕ(v)).
A k-coloring ϕ is proper if any two adjacent vertices receive different colors in ϕ. The chromatic number χ (G) of G is the
smallest k such that G has a proper k-coloring. Determining the chromatic number of a graph is one of themost fundamental
problems in graph theory. Given a graph G and an ordering σ = v1, . . . , vn of V (G), the first-fit coloring algorithm colors
the vertices from v1 to vn in the order imposed by σ , and the vertex vi is colored with the smallest positive integer that is
not present among the colors of the neighbors of vi which are in {v1, . . . , vi−1} (in other words, the neighbors of vi which
are already colored). The Grundy number Γ (G) is the largest k such that G admits a first-fit coloring (for some ordering)
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using k colors. First-fit is presumably the simplest heuristic to compute a proper coloring of a graph. In this sense, the
Grundy number gives an algorithmic upper bound on the performance of any heuristic for the chromatic number. This
notion was first studied by Grundy in 1939 in the context of digraphs and games [4,18], and formally introduced 40 years
later by Christen and Selkow [9]. It was independently defined under the name ochromatic number by Simmons [36] (the
two concepts were proved to be equivalent in [14]). Many works have studied the first-fit algorithm in connection with
on-line coloring algorithms, see for example [32]. A natural relaxation of this concept is theweak Grundy number, introduced
by Kierstead and Saoub [26], where the obtained coloring is not asked to be proper. A more restricted concept is the one of
connected Grundy number, introduced by Benevides et al. [3], where the algorithm is given an additional ‘‘local’’ restriction
on the feasible vertex orderings that can be considered: at each step of the first-fit algorithm, the subgraph induced by the
colored vertices must be connected.

The goal of this paper is to advance the study of the computational complexity of determining the Grundy number, the
weak Grundy number and the connected Grundy number of a graph.

Let us introduce the problems formally. Let G be a graph and let σ = v1, . . . , vn be an ordering of V (G). A k-coloring
ϕ : V (G) → {1, . . . , k} of G is a first-fit coloring with respect to σ if for every vertex vi, the two following conditions hold:
(1) for every color (i.e., positive integer) c with c < ϕ(vi), there is a j < i such that vi and vj are adjacent and ϕ(vj) = c ,
and (2) there is no j < i such that vi and vj are adjacent and ϕ(vi) = ϕ(vj). A k-coloring is a Grundy coloring if it is a first-fit
coloring with respect to some vertex ordering σ . A k-coloring is a weak Grundy coloring if it satisfies the condition (1) with
respect to some vertex ordering σ . A vertex ordering σ = v1, . . . , vn is connected if for every i, 1 ⩽ i ⩽ n, the subgraph
induced by {v1, . . . , vi} is connected. A k-coloring is a connected Grundy coloring if it is a Grundy coloring with respect to a
connected vertex ordering. We note that a (connected) Grundy coloring is a proper coloring, and a weak Grundy coloring is
not necessarily proper. Observe that a (connected) Grundy coloring is uniquely defined by its ordering σ , while it is not the
case for the weak Grundy coloring.

The maximum number of colors used, taken among all (weak, connected, respectively) Grundy colorings, is called the
(weak, connected, respectively) Grundy number and is denoted Γ (G) (Γ ′(G) and Γc(G), respectively). In this paper, we study
the complexity of computing these invariants.

Grundy Coloring
Input: A graph G, an integer k.
Question: Do we have Γ (G) ⩾ k?

Weak Grundy Coloring
Input: A graph G, an integer k.
Question: Do we have Γ ′(G) ⩾ k?

Connected Grundy Coloring
Input: A graph G, an integer k.
Question: Do we have Γc(G) ⩾ k?

Note that χ (G) ⩽ Γ (G) ⩽ ∆(G)+1, where χ (G) is the chromatic number and∆(G) is themaximumdegree of G. However,
the difference Γ (G) − χ (G) can be (arbitrarily) large, even for bipartite graphs. For example, the Grundy number of the tree
of Fig. 1 is 4, whereas its chromatic number is 2. Note that this is not the case for Γc for bipartite graphs, since Γc(G) ⩽ 2 for
any bipartite graph G [3]. However, the difference Γc(G) − χ (G) can be (arbitrarily) large even for planar graphs [3].

Previous results. Grundy Coloring remains NP-complete on bipartite graphs [22] and their complements [38] (and hence
claw-free graphs and P5-free graphs), on chordal graphs [35], andon line graphs [21]. Certain graph classes admit polynomial-
time algorithms. There is a linear-time algorithm for Grundy Coloring on trees [23]. This result was extended to graphs
of bounded treewidth by Telle and Proskurowski [37], who proposed a dynamic programming algorithm running in time
kO(w)2O(wk)n = O(n3w2

) for graphs of treewidth w (in other words, their algorithm is in FPT for parameter k + w and in XP
for parameterw).2 A polynomial-time algorithm for Grundy Coloring on P4-laden graphs, which contains all cographs as a
subfamily, was given in [2].

Note that Grundy Coloring admits a polynomial-time algorithm when the number k of colors is fixed [39], in other
words, it is in XP for parameter k.

Grundy Coloring has polynomial-time constant-factor approximation algorithms for inputs that are interval graphs
[20,32], complements of chordal graphs [20], complements of bipartite graphs [20] and bounded tolerance graphs [26].

2 The first running time is not explicitly stated in [37] but follows from their meta-theorem. The second one is deduced by the authors of [37] from the
first one by upper-bounding k by wlog2n + 1.
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Fig. 1. The binomial tree T4 , where numbers denote the color of each vertex in a first-fit coloring with largest number of colors.

However, there is a constant c > 1 such that approximating Grundy Coloring within c in polynomial time is impossible
unlessNP⊆ RP [27] (a result extended to chordal graphs under the assumption P ̸= NP in the unpublishedmanuscript [17]).
It is not known whether a polynomial-time o(n)-factor approximation algorithm exists.

When parameterized by the order of the graph minus the number of colors, Grundy Coloring was shown to be in FPT
by Havet and Sempaio [22].

Weak Grundy Coloringwas not studied as much as Grundy Coloring, but many results that hold for Grundy Coloring
are applicable to Weak Grundy Coloring. Weak Grundy Coloring was shown to be NP-hard to approximate within some
constant factor c > 1, even on chordal graphs [17]. Furthermore, in [37] an algorithm for Weak Grundy Coloring running
in time 2O(wk)n = O(n3w2

) for graphs of treewidth w was given (in [37], Weak Grundy Coloring was called Iterated
Dominating Set).

Connected Grundy Coloringwas introduced by Benevides et al. [3], who proved it to be NP-complete, even for chordal
graphs and for co-bipartite graphs.

Our results. We give two exact algorithms for Grundy Coloring and Weak Grundy Coloring running in time O∗(2.443n)
and O∗(2.716n), respectively. It was previously unknown if any O∗(cn)-time algorithms exist for these problems (with c
a constant). Denoting by w the treewidth of the input graph, it is not clear whether the O∗(2O(wk))-time algorithms for
Grundy Coloring andWeak Grundy Coloring of [37] can be improved, for example to algorithms of running timeO∗(kO(w))
or O∗(f (w)) (the notation O∗ neglects polynomial factors). In fact we show that an O∗(kO(w))-time algorithm for Grundy
Coloringwould also have running time O∗(2O(w logw)).

As a lower bound, we show that assuming the Exponential Time Hypothesis (ETH), an O∗(2o(w logw))-time algorithm for
Grundy Coloring orWeak Grundy Coloring does not exist (wherew is the feedback vertex set number of the input graph).
In particular, the exponent n cannot be replaced by the feedback vertex set number (or treewidth) in our O∗(2.443n)-and
O∗(2.716n)-time algorithms.

We prove that on apex-minor-free graphs, quasi-polynomial time algorithms, of running time nO(log2n), exist for Grundy
Coloring and Weak Grundy Coloring.

We also show thatWeak Grundy Coloring can be solved in FPT time O∗(22O(k) ) using the color coding technique. Under
the ETH, we show that this is essentially optimal: no O∗(22o(k)2o(n+m))-time algorithm for graphs with n vertices andm edges
exists. The latter lower bound also holds for Grundy Coloring.

We also study the parameterized complexity of Grundy Coloring parameterized by the number of colors, showing that
it is in FPT for graphs including chordal graphs, claw-free graphs, and graphs excluding a fixed minor.

Finally, we show that Connected Grundy Coloring is computationally much harder than Grundy Coloring and Weak
Grundy Coloringwhen viewed through the lens of parameterized complexity.While for the parameter ‘‘number of colors’’,
Grundy Coloring is inXP andWeakGrundy Coloring is in FPT, we show thatConnectedGrundy Coloring isNP-complete
evenwhen k = 7, that is, it does not belong toXPunlessP = NP. Note that the knownNP-hardness proof of [3] forConnected
Grundy Coloringwas only for an unbounded number of colors.

Structure of the paper. We start with some preliminary definitions, observations and lemmas in Section 2. Our positive
algorithmic results are presented in Section 3, and our algorithmic lower bounds are presented in Section 4. We conclude
the paper in Section 5.

2. Preliminaries

Graphs and sets. For any two integers x < y, we set [x, y] := {x, x+1, . . . , y−1, y}, and for any positive integer x, [x] := [1, x].
V (G) denotes the set of vertices of a graph G and E(G) its set of edges. For any S ⊆ V (G), E(S) denotes the subset of edges of
E(G) having both endpoints in S, and G[S] denotes the subgraph of G induced by S; that is, graph (S, E(S)). If H ⊆ V (G), G−H
denotes the graph G[V (G) \ H]. As a slight abuse of notation, if H is an (induced) subgraph of G, we also denote by G− H the
graph G[V (G)\V (H)]. For any vertex v ∈ V (G), N(v) := {w ∈ V (G)|vw ∈ E(G)} denotes the set of neighbors of v in G. For any
subset S ⊆ V (G), N(S) =

⋃
v∈SN(v) \ S. The distance-k neighborhood of v is the set of vertices at distance at most k from v.

Computational complexity. A decision problem is said to be fixed-parameter tractable (or in the class FPT) w.r.t. parameter k
if it can be solved in time f (k) · |I|c for an instance I , where f is a computable function and c is a constant (see for example
the books [12,33] for details). The class XP contains those problems solvable in time |I|f (k), where f is a computable function.
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The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. asserting that there is no 2o(n)-time algorithm
for 3-SAT on instances with n variables [24]. The ETH, together with the sparsification lemma [24], even implies that
there is no 2o(n+m)-time algorithm solving 3-SAT. Many algorithmic lower bounds have been proved under the ETH, see
for example [29].

Minors. A minor of a graph G is a graph that can be obtained from G by (i) deletion of vertices or edges (ii) contraction of
edges (removing an edge and merging its endpoints into one). Given a graph H , a graph G is H-minor-free if H is not a minor
of G.

An apex graph is a graph obtained from a planar graph G and a single vertex v, and by adding arbitrary edges between v
and G. A graph is said to be apex-minor-free if it is H-minor-free for some apex graph H .

Tree-decompositions. A tree-decomposition of a graph G is a pair (T ,X ), where T is a tree and X := {Xt : t ∈ V (T )} is a
collection of subsets of V (G) (called bags), and they must satisfy the following conditions: (i)

⋃
X∈V (T ) = V (G), (ii) for every

edge uv ∈ E(G), there is a bag of T that contains both u and v, and (iii) for every vertex v ∈ V (G), the set of bags containing
v induces a connected subtree of T .

The maximum size of a bag Xt over all tree nodes t of T minus one is called the width of T . The minimum width of
a tree-decomposition of G is the treewidth of G. The notion of tree-decomposition has been used extensively in algorithm
design, especially via dynamic programming on the tree-decomposition.

Grundy coloring. Let G be a graph, σ = v1, . . . , vn, an ordering of its vertices, ϕ : V (G) → [k], the first-fit coloring of G
with respect to σ , and j, the smallest index such that ϕ(vj) = k. Informally, finishing the Grundy coloring of vj+1, . . . , vn is
irrelevant in asserting that Γ (G) ⩾ k. Indeed, this bound is established as soon as we color vertex vj. We formalize this idea
that a potentially much smaller induced subgraph of the input graph (here, G[{v1, . . . , vj}]) might be a relevant certificate,
via the notion of witnesses and minimal witnesses.3

In a graph G, awitness achieving color k, or simply a k-witness, is an induced subgraph G′ of G, such that Γ (G′) ⩾ k. Such a
k-witness isminimal if no proper induced subgraph of G′ has Grundy number at least k.

Observation 1. For any graph G, Γ (G) ⩾ k if and only if G admits a minimal k-witness.

We can also notice that, in any Grundy k-coloring (that is, Grundy coloring achieving color k) of a minimal k-witness,
exactly one vertex is colored with k. Otherwise, it would contradict the minimality.

If k is not specified, we assume that the witness achieves the largest possible color: a (minimal) witness is a (minimal)
witness achieving color Γ (G). A colored (minimal) (k-)witness is a (minimal) (k-)witness together with a Grundy k-coloring
of its vertices, that can be given equivalently by the coloring function ϕ, or the ordering σ , or a partition W1 ⊎ . . . ⊎ Wk of
the vertices into color classes (namely, the vertices ofWi are colored with i).

We will now observe that minimal k-witnesses have at most 2k−1 vertices. To that end, we define a family of rooted trees
sometimes called binomial trees. If, for each i ∈ [l], ti is a tree rooted at vi, v[t1, . . . , tl] denotes the tree rooted at v obtained
by adding v to the disjoint union of the ti’s and linking it to all the vi’s. Then, the ith child of v is vi and is denoted by v(i). We
say that v is the parent of vi. We may also say that v is the parent of the tree ti. The set of binomial trees (Tk)k⩾1 is a family of
rooted trees defined as follows (see Fig. 1 for an illustration):

– T1 consists only of one vertex (incidentally the root), and
– ∀k ⩾ 1, Tk+1 = v[T1, T2, . . . , Tk].

The binomial tree Tk can be seen as the dependencies between the vertices of a minimal k-witness colored by a coloring
ϕ. More concretely, any vertex colored with color i ⩽ k needs to have in its neighborhood i − 1 vertices colored with each
color from 1 to i− 1. Say, we label the root of Tk with the unique vertex colored k. And then, in a top-townmanner, we label,
for each j ∈ [ϕ(v) − 1], the jth child of a vertex labeled by v, by a neighbor of v colored with j. Each vertex of the minimal
k-witness should appear at least once as a label of Tk, for the sake of minimality. Besides, the number of vertex of Tk is 2k−1.
This leads to the following observations:

Observation 2. Aminimal k-witnessW has radius atmost k.More precisely,W is entirely included in the distance-k neighborhood
of the vertex colored with k in a Grundy k-coloring of W.

Observation 3. A minimal k-witness has at most 2k−1 vertices.

Observation 4. The color of a vertex of degree d in any Grundy coloring is at most d + 1.

By Observations 1 and 3, Grundy Coloring can be solved by checking if one of the
( n
2k−1

)
induced subgraphs on 2k−1

vertices, has Grundy number k. This shows that, parameterized by the number k of colors, the problem is in XP:

Corollary 1 (Zaker [39]). Grundy Coloring can be solved in time f (k)n2k−1
.

3 Witnesses were called atoms by Zaker [39] and critical in [19].
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Fig. 2. A simple instantiation of Lemma 2 with s = 4, p = 1, and a1 = 2.

We now come back to binomial trees and show two lemmas that will be very helpful to prove the hardness results of the
paper.

Lemma1. The Grundy number of Tk is k. Moreover, there are exactly two Grundy colorings achieving color k, and a unique Grundy
coloring if we impose that the root v is colored k.

Proof. As hinted before, the tree Tk is a minimal k-witness with the largest number of vertices, so Γ (Tk) ⩾ k. The easiest
Grundy k-coloring of Tk consists of coloring all the leaves with color 1. Now, if one removes all the leaves of Tk, one gets a
binomial tree Tk−1, whose leaves can all be colored 2, and so forth, up to coloring v with color k (see Fig. 1). As the degree of
Tk is k − 1, by Observation 4, Γ (Tk) ⩽ k also holds.

What remains to be seen is that the Grundy k-coloring of Tk is unique up to deciding which of v and v(k − 1) gets color
k and which gets color k − 1. There are only two vertices of degree k − 1 in Tk: v and v(k − 1). Therefore, only v or v(k − 1)
can potentially be colored with k, by Observation 4. As Tk rooted at v is isomorphic to Tk rooted at v(k − 1), we can assume
that v will be the vertex colored k. We show by strong induction that there is only one Grundy coloring of Tk where the root
has color k. Obviously, there is a unique Grundy coloring of T1. For any integer k ⩾ 2, if we impose that the root v is colored
k, the k − 1 children of v have to be colored with all the integers of [k − 1]. As for each i ∈ [k − 1], Ti has maximum degree
i − 1, the color of v(i) is at most i. First, color k − 1 can only come from v(k − 1). But, now that the color of this vertex is
imposed, color k− 2 can only come from v(k− 2). Finally, the only possibility is to color v(i) with color i for each i ∈ [k− 1].
By the induction hypothesis, there is a unique such Grundy coloring for each subtree. □

Subtrees and dominant subtrees. The subtree t[x] rooted at vertex x of a tree t rooted at v, is the tree induced by all the
vertices y of t such that the simple path from v to y goes through x. The rooted tree t ′ is a subtree of t , if there exists a vertex
x of t such that t ′ = t[x]. The number of rooted subtree t ′ of a rooted tree t is the number of vertices x of t such that t ′ = t[x].
In a binomial tree Tk, the number of Tl (for l ∈ [k− 1]) is 2k−l−1. For any l ∈ [k− 1], we say that a subtree Tl of Tk is dominant,
if its root is the child of the root of a Tl+1. In other words, a dominant subtree is the largest among its siblings. The dominant
subtree of a vertex of a binomial tree is the largest subtree rooted at one of its children. In a binomial tree Tk, the number of
dominant Tl (for l ∈ [k − 2]) is by definition the number of Tl+1, that is 2k−l−2.

Although the statement of the next lemma is rather technical, its underlying idea is fairly simple. If one removes some
well-chosen subtree Tai from a binomial tree Ts rooted at v, and connects the parent f of this removed subtree to the rest of
a graph G, then in order to color v with color s, one would have to color with ai at least one of the neighbors of f outside Ts
(see Fig. 2). Using this as a gadget, we will be able to make sure that at least one vertex of a specific vertex-subset is colored
with a specific color. We prove the more general result when multiple subtrees are removed.

Lemma 2. Let a1, . . . , ap < s be integers. Let G be a graph, and let T be an induced subgraph of G such that the following hold.

– T can be obtained from Ts (rooted at v), a set Ta1 , . . . , Tap of pairwise disjoint dominant subtrees. Let F = {f1, . . . , fp} be
the set of parents of those subtrees.

– We have N(V (G) \ V (T )) ∩ V (T ) = F , that is, only F links T to the rest of G.

Then, the following conditions on Grundy colorings of G are equivalent.

– (i) There is a Grundy coloring such that v is colored s.
– (ii) There is a Grundy coloring of an induced subgraph of G− T such that, for each i ∈ [p], at least one vertex of N(fi) \V (T )

is colored ai and no vertex of N(fi) \ V (T ) is colored ai + 1.

Proof. (ii) ⇒ (i). Assume that there is a Grundy coloring of an induced subgraph of G − T such that, for each i ∈ [p], at least
one vertex of N(fi) \ V (T ) is colored ai and no vertex of N(fi) \ V (T ) is colored ai + 1. We extend this Grundy coloring by
coloring T as we would optimally color Ts. By Lemma 1, vertex v will be colored with s.
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(i) ⇒ (ii). Now, suppose that there is a Grundy coloring where vertex v receives color s. By the same induction as in the
second part of the proof of Lemma 1, each vertex fi has to be colored ai + 1. The degree of the neighbors of fi within T is
bounded by ai, hence they cannot be colored with color ai (unless one first colors fi with a smaller color, but this would be
a contradiction). Thus, the color ai in the neighborhood of fi has to come from a vertex of G − T . Moreover, no vertex in
N(fi) \ V (T ) can be colored ai+1, otherwise fi cannot get this color. Summing up, there is a Grundy coloring of an induced
subgraph of G − F such that, for each i ∈ [p], at least one vertex of N(fi) \ V (T ) is colored ai and no vertex of N(fi) \ V (T ) is
colored ai +1. As F separates T −F from G−T , coloring vertices in T −F is not helpful to color vertices in N(fi)\V (T ). Hence,
there is a Grundy coloring of an induced subgraph of G − T such that, for each i ∈ [p], at least one vertex of N(fi) \ V (T ) is
colored ai and no vertex of N(fi) \ V (T ) is colored ai + 1. □

Weak Grundy and connected Grundy colorings. We can naturally extend the notion of witnesses to the Weak Grundy
Coloring problem. It turns out that everything we observed or showed so far for Grundy Coloring, namely Observations 1,
2, 3, 4, and Lemmas 1 and 2 (where condition (ii) is replaced by the simpler condition: (ii’) There is a weak Grundy coloring of
an induced subgraph of G − T such that, for each i ∈ [p], at least one vertex of N(fi) is colored ai), are also valid when it comes
to weak Grundy colorings.

For Connected Grundy Coloring, again, we can similarly define a notion of witness. Though, as we will see, the size of
minimal k-witnesses for the connected version cannot be bounded by a function of k. Here, the only statements that remain
valid are Observations 1 and 4. To illustrate the different behavior of this variant, the connected Grundy number of any
binomial tree Tk is 2, as it is for every bipartite graph with at least one edge [3].

3. Positive results

We now present the positive algorithmic results of this paper.

3.1. Exact algorithms for Grundy Coloring and Weak Grundy Coloring

A straightforward way to solve Grundy Coloring is to enumerate all possible orderings of the vertex set and to check
whether the greedy algorithm uses at least k colors. This is a Θ(n!)-time algorithm. A natural question is whether there
is a faster exact algorithm. Such algorithms for Coloring based on dynamic programming have been long known, see for
example Lawler [28], but no cn algorithm for Grundy Coloring, for any constant c , was previously known. We now give
such an algorithm.

As a preparatory lemma, we remark that a colored minimal k-witness can be seen as a set of nested independent
dominating sets, in the following sense.

Lemma 3 ([19]). Let G be a graph and let G′ be a colored k-witness with the partition into color classes W1 ⊎ · · · ⊎ Wk. Then, Wi
is an independent set which dominates the set

⋃
j∈[i+1,k]Wj. In particular, W1 is an independent dominating set of V (G′).

Proof. As a Grundy coloring is a proper coloring, Wi is an independent set. If a vertex v ∈ Wh (with h > i) has no neighbor
in Wi, then v is colored with a color at most i, a contradiction. So,Wi should dominateWh. □

We rely on two observations: (a) in a coloredwitness, every color classWi is an independent dominating set in G[
⋃

j⩾iWj]

(Lemma 3), and (b) any independent dominating set is amaximal independent set (and vice versa). The algorithm is obtained
by dynamic programming over subsets, and uses an algorithm which enumerates all maximal independent sets.

Theorem 5. Grundy Coloring can be solved in time O∗(2.4423n).

Proof. Let G = (V , E) be a graph. We present a dynamic programming algorithm to compute Γ (G). For simplicity, given
S ⊆ V , we denote the Grundy number of the induced subgraph G[S] byΓ (S). We recursively fill a tableΓ ∗(S) over the subset
lattice (2V ,⊆) of V in a bottom-up manner starting from S = ∅. The base case of the recursion is Γ ∗(∅) = 0. The recursive
formula is given as

Γ ∗(S) = max{Γ ∗(S \ X) + 1 | X ⊆ S is an independent dominating set of G[S]}.

Now let us show by induction on |S| that Γ ∗(S) = Γ (S) for all S ⊆ V . The assertion trivially holds for the base case.
Consider a nonempty subset S ⊆ V ; by induction hypothesis, Γ ∗(S ′) = Γ (S ′) for all S ′

⊂ S. Let X be a subset of S achieving
Γ ∗(S) = Γ ∗(S \ X) + 1 and X ′ be the set of the color class 1 in the ordering achieving the Grundy number Γ (S).

Let us first see that Γ ∗(S) ⩽ Γ (S). By induction hypothesis we have Γ ∗(S \ X) = Γ (S \ X). Consider a vertex ordering
σ on S \ X achieving Γ (S \ X). Augmenting σ by placing all vertices of X at the beginning of the sequence yields a (set of)
vertex ordering(s). Since X is an independent set, the first-fit algorithm gives color 1 to all vertices in X , and since X is also a
dominating set for S\X , no vertex of S\X receives color 1. Therefore, the first-fit algorithm on such ordering usesΓ (S\X)+1
colors. We deduce that Γ (S) ⩾ Γ (S \ X) + 1 = Γ ∗(S \ X) + 1 = Γ ∗(S).

To see that Γ ∗(S) ⩾ Γ (S), we first observe that Γ (S \X ′) ⩾ Γ (S)−1. Indeed, the use of the optimal ordering of S ignoring
vertices of X ′ on S\X ′ yields the colorΓ (S)−1.We deduce thatΓ (S) ⩽ Γ (S\X ′)+1 = Γ ∗(S\X ′)+1 ⩽ Γ ∗(S\X)+1 = Γ ∗(S).
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As an independent dominating set is a maximal independent set, we can estimate the computation of the table by
restricting X to the family of maximal independent sets of G[S]. On an n-vertex graph, one can enumerate all maximal
independent sets in time O(1.4423n) [31]. Thus, filling the table by increasing size of set S takes:

n∑
i=0

(n
i

)
· 1.4423i

= (1 + 1.4423)n. □

A similar dynamic programming gives a slightly worse running time forWeak Grundy Coloring.

Theorem 6. Weak Grundy Coloring can be solved in time O∗(2.7159n).

Proof. Now, we fill the table:

Γ w(S) = max{Γ w(S \ X) + 1 | X ⊆ S is a minimal dominating set of G[S]}.

In a colored witness W1 ⊎ · · · ⊎ Wk of Weak Grundy Coloring, for any i ∈ [k], Wi (is no longer necessarily an independent
set and) dominates

⋃
j∈[i+1,k]Wj. To establish that, for any S ⊆ V , Γ w(S) = Γ ′(S), we need to transform any colored witness

W1 ⊎ · · · ⊎ Wk (with k ⩽ 2) into a colored witness W ′

1 ⊎ · · · ⊎ W ′

k on the same induced subgraph G′, also achieving color
k, but with the additional property that W ′

1 is a minimal dominating set of G′. Actually, in order to obtain that property we
only need to transfer some vertices of W1 to W2. We can choose W ′

1 ⊆ W1 to be any minimal dominating set of G′. Then,
we set W ′

2 = W2 ∪ (W1 \ W ′

1). For any i ∈ [3, k], we just set W ′

i = Wi. As W ′

1 is a dominating set of G′, the partition
W ′

1 ⊎ · · · ⊎W ′

k is indeed a colored witness. Enumerating all the minimal dominating sets of a graph on i vertices can be done
in time O∗(1.7159i) [16], hence the running time of our algorithm. □

We leave it as an open question to improve the running time of those algorithms. We note that the fast subset convolution
technique [5], which is commonly used to design exponential-time algorithms, does not seem to be directly applicable here.

3.2. Quasi-polynomial algorithms for Grundy Coloring and Weak Grundy Coloring on apex-minor-free graphs

Wewill now show that the XP algorithms of [37] for Grundy Coloring andWeak Grundy Coloring imply the existence
of quasi-polynomial-time algorithms for these problems on apex-minor-free graphs (such as planar graphs).

The following result of Chang and Hsu [8] will be used:

Theorem 7 ([8]). Let G be a graph on n vertices for which every subgraph H has at most d|V (H)| edges. Then Γ (G) ⩽ logd+1/d
(n) + 2.

In fact, we note that the bound of Theorem 7 also holds for the weak Grundy number, indeed the proof of [8] is still valid
for this case.

A class of graphs has bounded local treewidth if for any of itsmembersG, the treewidth ofG is upper-bounded by a function
of the diameter of G. The following result was proved by Demaine and Hajiaghayi [11]:

Theorem 8 ([11]). For every apex graph H, the class of H-minor-free graphs has bounded local treewidth. More precisely, there
is a function f such that any H-minor-free graph G of diameter D has treewidth at most f (H)D.

In fact, it was proved by Eppstein [13] that a graph has bounded local treewidth if and only if it is apex-minor-free.

Theorem9. Grundy Coloring andWeakGrundy Coloring can be solved in time nO(log2n) on apex-minor-free graphs of order n.

Proof. We first considerGrundyColoring. AnyH-minor-free graphof ordernhas atmost f (H)n edges [30] for some function
f ; hence, by Theorem 7, we have k ⩽ Γ (G) ⩽ c log n for some constant c (otherwise, we have a NO-instance). As noted in
Observation 2, any minimal k-witness is included in some distance-k neighborhood of G. Hence, we apply the O(n3w2

)-time
algorithm of [37] for graphs of treewidth at most w: for every vertex v of G, apply it to the distance-k neighborhood of
v. This is a subgraph of diameter at most 2k = O(log n), and by Theorem 8 it has treewidth w = O(log n) as well. Hence
O(n3w2

) = nO(log2n).
The same argumentation also works forWeak Grundy Coloring. Indeed, as pointed out before, the bound of Theorem 7

also holds for the weak Grundy number. Moreover, there is also an algorithm running in time O(n3w2
) for Weak Grundy

Coloring [37] (where the problem is called Iterated Dominating Removal). □

In the light of Theorem 9, it is natural to ask whetherGrundy Coloring can be solved in polynomial time on apex-minor-
free graphs (or planar graphs)? Note that by Theorem 9, an NP-hardness result for Grundy Coloring on apex-minor-free
graphs would contradict the ETH.
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3.3. Weak Grundy Coloring parameterized by k is in FPT

We recall that Weak Grundy Coloring is NP-complete [17]. In this subsection, we show that Weak Grundy Coloring
has an O∗(22O(k) )-time algorithm (Theorem 10). We will later show that this running time is essentially optimal under the
ETH (Theorem 13).

Theorem 10. Weak Grundy Coloring can be solved in time O∗(22O(k) ), where k is the number of colors.

Proof. Let G be the input graph. We use the randomized color-coding technique of Alon et al. [1]. Let us first uniformly
randomly color the vertices of G with integers between 1 and k, and denote by col the function giving the color of a vertex
according to this random coloring. Then, we apply a pruning step, removing all vertices which violate the property of a weak
Grundy coloring. That is, we remove each vertex v such that col(v) = c if ∃c ′ < c,¬∃u ∈ N(v), col(u) = c ′. Equivalently, we
keep only the vertices v such that ∀c ∈ [col(v) − 1], ∃u ∈ N(v), col(u) = c. Note that is well possible that a vertex satisfying
the condition at first, no longer satisfies it at a later point, after some of its neighbors are removed. Therefore, we apply the
pruning until all the vertices satisfy the condition. If there is still a vertex colored with k after this pruning step, then, by
construction, there is a weak Grundy coloring achieving color k in G (by coloring first the vertices v such that col(v) = 1,
then the vertices v such that col(v) = 2, and so on, up to k).

If there is no weak Grundy (minimal) k-witness, this computation always rejects. Otherwise, it accepts only if a witness
is well-colored by the random coloring. By Observation 3, a weak Grundy k-witness (as a Grundy k-witness) has size at most
2k−1. At worst, there is a unique weak Grundy witness of size 2k−1 admitting a unique coloring. The probability to find this
witness in one trial is 1

k2k−1 . Therefore, by repeating the previous step log( 1
ε
)k2

k−1
times, we find a solution with probability

at least 1 − ε, for any ε > 0. Overall, the running time is O(k2
k−1

(n + m)n) = O∗(22O(k) ). □

We observe that the algorithm of Theorem 10 can be derandomized using so-called universal coloring families [1].
Unfortunately, the approach used to prove Theorem 10 does not work for Grundy Coloring because we have no

guarantee that the color classes are independent sets.

3.4. Grundy Coloring parameterized by k is in FPT on special graph classes

For each fixed k, Grundy Coloring can be solved in polynomial time [39] and thus Grundy Coloring parameterized by
the number k of colors is in XP. However (unlike Weak Grundy Coloring, as seen in Theorem 10), it is unknown whether
Grundy Coloring is in FPT when parameterized by k. We will next show that it is indeed the case when restricting the
instances to H-minor-free, chordal and claw-free graphs.

Theorem 11. Grundy Coloring parameterized by the number of colors is in FPT for the class of graphs excluding a fixed graph
H as a minor.

Proof. By Observation 1, G contains aminimal k-witnessH as an induced subgraph if and only if Γ (G) ⩾ k. By Observation 3,
a minimal k-witness has at most 2k−1 vertices. So, the number of minimal k-witnesses (up to isomorphism) is bounded by a
function of k. Besides, H-Induced Subgraph Isomorphism is in FPTwhen parameterized by |V (H)| on graphs excluding H as
aminor [15]. Therefore, one can check ifΓ (G) ⩾ k by solvingH-Induced Subgraph Isomorphism for all minimal k-witnesses
H . □

We have the following corollary of the algorithm of Telle and Proskurowski [37]. Note that Grundy Coloring is
NP-complete on chordal graphs [35].

Theorem 12. Let C be a graph class for which every member G satisfies tw(G) ⩽ f (Γ (G)) for some function f . Then, Grundy
Coloring parameterized by the number of colors is in FPT on C. In particular, Grundy Coloring is in FPT on chordal graphs.

Proof. Since Grundy Coloring is in FPT for parameter combination of the number of colors and the treewidth [37], the first
claim is immediate. Moreover ω(G) ⩽ Γ (G), hence if tw(G) ⩽ f (ω(G)) we have tw(G) ⩽ f (Γ (G)). For any chordal graph G,
tw(G) = ω(G) − 1 [6]. □

The following shows that, unlike the classical Coloring problem, which remains NP-hard on degree 4 graphs, Grundy
Coloring is FPT when parameterized by the maximum degree∆(G).

Proposition 1 ([35]). Grundy Coloring is in FPT when parameterized by the maximum degree∆(G).

Proof. By Observation 2, one can enumerate every distance-k neighborhood of each vertex, test every k-coloring of this
neighborhood, and check if it is a valid Grundy k-coloring. Every such neighborhood has size at most∆k+1 ⩽ ∆∆+2 since by
Observation 4, k ⩽ ∆ + 1. Finally, there are at most ka k-colorings of a set of a elements. Therefore, Grundy Coloring can
be solved in time O

(
nk∆

k+1
)

= n∆∆O(∆)
for graphs of maximum degree∆. □
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We have the following corollary of Proposition 1. Note that Grundy Coloring is NP-complete on claw-free graphs [38].

Corollary 2. Let C be a graph class for which every member G satisfies ∆(G) ⩽ f (Γ (G)) for some function f . Then, Grundy
Coloring parameterized by the number of colors is in FPT for graphs in C. In particular, this holds for the class of claw-free graphs.

Proof. The first part directly follows from Proposition 1. For the second part, consider a claw-free graph G and a vertex v of
degree∆(G) in G. Since G is claw-free, the subgraph induced by the neighbors of v has independence number at most 2, and
hence Γ (G) ⩾ χ (G) ⩾ χ (N(v)) ⩾ ∆(G)

2 . □

4. Negative results

In this section, we present our algorithmic lower bounds.

4.1. A lower bound for Weak Grundy Coloring and Grundy Coloring under the ETH

Wenowpresent two similar reductions that (under the ETH) rule out algorithms forWeakGrundy Coloring andGrundy
Coloring with a running time that is sub-double-exponential in k and sub-exponential in the instance size. In particular,
this shows that the FPT algorithm for Weak Grundy Coloring of Theorem 10 has a near-optimal running time, assuming
the ETH.

The property ‘‘k ⩽ 1+w log n’’ (which also holds for weak Grundy colorings [37]), entails that a running timeO∗(22o(
k
w )

) is
in fact subexponential-time2o(n). Therefore, if a subexponential-time algorithm (in thenumber of vertices) is provenunlikely,
we would immediately obtain the conditional lower bound of O∗(22o(

k
w )

). Though, it is unclear whether the reductions from
the literature onGrundy colorings allow to rule out a subexponential-time algorithm forGrundyColoring (orWeakGrundy
Coloring) under ETH. More importantly, what we prove next in Theorem 13 is a stronger lower bound, since the treewidth
disappears in the denominator of the second exponent.

Theorem 13. If Weak Grundy Coloring or Grundy Coloring is solvable in time O∗(22o(k)2o(n+m)) on graphs with n vertices
and m edges, then the ETH fails.

Proof. We first give the reduction forWeak Grundy Coloring.
InMonotone 3-NAE-SAT, being given a 3-CNF formulawithout negation, one is asked to find a truth assignment such that

every clause contains a true literal and a false literal. The Monotone 3-NAE-SAT problem (also called Positive 3-NAE-SAT)
with n variables and m clauses, is not solvable in time 2o(n+m), unless the ETH fails (see for instance Lemma 3.12. in [25]).
More precisely, authors of [25] present a reduction from 3-SAT toMonotone 3-NAE-SAT producing instances with O(n+m)
variables and clauses, which together with the Sparsification Lemma of Impagliazzo et al. [24] gives the claimed result.

We now build from an instance of Monotone 3-NAE-SAT C = {C1, . . . , Cm} over the variables X = {x1, . . . , xn}, an
equivalent instance ofWeak Grundy Coloring with O(n + m) vertices and clauses, and k := ⌈logm⌉ + 5.

We remove, from a binomial tree Tk, rooted at r , m dominant subtrees T3. This is possible since the number of such
subtrees is 2k−3−2

= 2⌈logm⌉+5−3−2
= 2⌈logm⌉ ⩾ m. We call T the tree that we obtain by this process. We denote by f1, . . . , fm

the parents of those removed subtrees, and we link, for each j ∈ [m], fi to a new vertex v(Cj) representing the clause Cj. For
each i ∈ [n], we add a star K1,n, whose center is denoted by c and whose leaves are denoted by v(xi), and that represents the
variables.We link each vertex v(xi) to vertex v(Cj) if variable xi appears in clause Cj. This ends the construction of the graph G.

Let us first show that Γ ′(G) = k if and only if r can be colored k. By Observation 4, the only vertices that can (potentially)
be colored with color k are r , r(k − 1), c , and the v(xi)’s. We already remarked that if r(k − 1) can be colored k, then, so does
r (Lemma 1). What remains to prove is that neither c nor any of the v(xi)’s cannot be colored k. The neighbors of a vertex
v(xi) are c and some vertices v(Cj), whose degree is bounded by 4 (recall that the clauses contain at most three variables).
Thus, v(xi) can have in its neighborhood at most six distinct colors, and its color can be at most 7. Similarly, the neighbors of
c are the v(xi)’s, so the color of vertex c can be at most 8. We can assume that ⌈logm⌉ > 3 (and, k > 8) since otherwise the
instance is of constant size. Therefore, Γ ′(G) = k if and only if r can be colored k, which means that, by applying Lemma 2
with induced subtree T , we have Γ ′(G) = k if and only if v(Cj) can be colored 3, for each j ∈ [m], without first coloring any
of the fj’s.

Now, suppose that C is satisfiable. Let ψ be a satisfying truth assignment of C. Then, we can color each vertex v(Cj) with
color 3 in the following way. We first color c with color 1. Then, for each i ∈ [n], we color v(xi) with 1 if xi is set to false byψ ,
and with 2 if it is set to true. Recall that the weak Grundy coloring does not need to be proper. As each clause Cj has at least
one variable xi1 set to true and at least one variable xi2 set to false, v(Cj) has in its neighborhood a vertex v(xi1 ) colored 2 and
a vertex v(xi2 ) colored 1. Hence, v(Cj) can be colored 3; moreover, we have not colored any vertex fj, and we are done.

Conversely, suppose that v(Cj) can be colored 3, for each j ∈ [m], without coloring first any of the fj’s. Then, in the
neighborhood of each v(Cj) deprived of the fj’s, there should be one vertex v(xi1 ) colored 2 and one vertex v(xi2 ) colored
1. Therefore, the truth assignment ψ setting xi to true if v(xi) has been colored 2 and to false if v(xi) has been colored 1 or
has not been colored, satisfies C.

In conclusion, we showed that Γ ′(G) = k if and only if C is satisfiable. The number N of vertices of the graph G is bounded
by n+1+2⌈logm⌉+4 ⩽ n+32m+1 = O(n+m). The number of edgesM is bounded by n+3m+2⌈logm⌉+4 ⩽ n+35m = O(n+m)
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Thus, solving Weak Grundy Coloring in time O∗(22o(k)2o(N+M)) = O∗(2o(m)2o(n+m)) = O∗(2o(n+m)) would solve Monotone
3-NAE-SAT in subexponential-time, disproving the ETH.

For Grundy Coloring, we use a similar reduction by replacing the star K1,n encoding the variables by a matching of n
edges v(¬xi)v(xi) where v(¬xi) is a new vertex having only one neighbor: v(xi). Then, the proof carries over: in a Grundy
coloring, one could color v(xi) with color 1 or 2, by first coloring v(¬xi) with color 1. □

The behavior shown by Weak Grundy Coloring is rare, and up to our knowledge, the only other known example for
which an O∗(22O(k) ) is optimal under the ETH (with k the natural parameter) is the Edge Clique Cover problem [10]. For the
Edge Clique Cover problem, where one wants to cover all the edges of a graph by a minimum number k of cliques, only an
algorithm running in time O∗(22o(k)2o(n)) would disprove ETH. The number of edges in the produced instance of Edge Clique
Cover has to be superlinear. Indeed, otherwise the maximum clique would be of constant size, and the parameter k would
be at least linear in the number of vertices n, when it should in fact be logarithmic in n. Therefore, Weak Grundy Coloring
seems to be the first problem for which an O∗(22o(k)2o(n+m))-algorithm is shown to be unlikely, while an O∗(22O(k) )-algorithm
exists.

4.2. Lower bound on the treewidth dependency for Grundy Coloring and Weak Grundy Coloring

Let us recall that the algorithm for Grundy Coloring and Weak Grundy Coloring running in time nO(w2) of Telle and
Proskurowski comes from a 2O(wk)n-algorithm and the fact that k ⩽ w log n + 1 [37].

An interesting observation is that an algorithm for Grundy Coloring or Weak Grundy Coloring running in time
O∗(kO(w)) = O∗(2O(w log k)), where w is the treewidth of the input graph, would imply an FPT algorithm for the parameter
treewidth alone.

Observation 14. If Grundy Coloring or Weak Grundy Coloring can be solved in time O∗(kO(w)) on instances of treewidthw,
then it can be solved in time O∗(2O(w logw)).

Proof. Since, as mentioned before, k ⩽ w log n + 1 [37] and using the fact that ∀x, y > 0, (log x)y ⩽ y2yx, we have
O∗(kO(w)) = O∗(wO(w)(log n)O(w)) = O∗(wO(w)) = O∗(2O(w logw)). □

Note that there are kw possible k-colorings of a bag of sizew, hence an algorithm for Grundy Coloring orWeak Grundy
Coloring running in time O∗(kO(w)) could be based on dynamic programming over a tree decomposition (and would greatly
improve over the running time of the algorithmof [37]). Althoughwe do not knowwhether such an algorithm exists, we now
show that, assuming the ETH, one cannot get a significantly better running time (even when replacing the treewidth by the
larger parameter ‘‘feedback vertex set number’’). The reduction has some similarities with the reduction from Theorem 13,
but it is more involved since we need to additionally lower the value of the treewidth.

Theorem 15. If Grundy Coloring or Weak Grundy Coloring is solvable in time O∗(2o(w logw)) on graphs with treewidth (even,
feedback vertex set number) at most w, then the ETH fails.

Proof. We describe the proof for Grundy Coloring, but the same proof also works forWeak Grundy Coloring.
We build from an instance of SAT an equivalent instance of Grundy Coloring with subexponentially many vertices and

sublinear feedback vertex set number. We rely on the grouping technique (similarly to [29]) that uses the fact that the
number of permutations over a slightly sublinear number of elements is still exponential.We alsomakemultiple applications
of Lemma 2.

Let C = {C1, . . . , Cm} be the m clauses of an instance of SAT over the set of variables X = {x1, . . . , xn}. Let q be a positive
integer that we will fix later. We partition arbitrarily X into q sets X1, . . . , Xq called groups, each of size at most ⌈

n
q ⌉. A group

assignment is a truth assignment of the variables of Xh for some h ∈ [q]. A group assignment satisfies a clause if it sets to true
at least one of its literals (even if some variables of the clause are not instantiated). By potentially adding dummy variables,
we may assume that |Xh| = ⌈

n
q ⌉, for each h ∈ [q]. We also fix an arbitrary order of the variables within each group Xh, so

that an assignment of Xh can be seen as a word of {0, 1}⌈
n
q ⌉. Let t = ⌈3n/(q log n

q )⌉ and recall thatSt is the symmetric group.

We fix an arbitrary one-to-one function ζ : {0, 1}⌈
n
q ⌉

→ St mapping a group assignment to a permutation over t elements.
Such a function exists, since |St | = t! > ( t

3 )
t ⩾ 23n(log n

q −log log n
q )/(q log

n
q ) > 2⌈n/q⌉. Finally, we set s = ⌈logm⌉ + 2t + 4.

We now describe the instance graph G ofGrundy Coloring. We remove, from a binomial tree Ts rooted at r ,m (arbitrary)
dominant subtrees Tt+2. This is possible since, in Ts, there are 2s−t−4

= 2⌈logm⌉+t ⩾ m dominant trees Tt+2. We denote by
f1, . . . , fm the m parents of those m removed subtrees. We call T the tree that we have obtained so far. For each clause Cj
(j ∈ [m]) and for each group assignment τ (of some group Xh) satisfying Cj, we add a vertex v(j, τ ) that we link to fj. We
denote by Ij the set of vertices v(j, ·). Vertex v(j, τ ) also becomes the root of a binomial tree Tt+2 from which we remove
the dominant subtree of each of its children (except for the child v(j, τ )(1) which is a leaf and therefore has no dominant
subtree). We call that tree T (j, τ ). Now, for each group Xh (h ∈ [q]), we add a clique Sh = {s1h, . . . , s

t
h} on t vertices. For each

vertex v(j, τ ), if τ is an assignment of the group Xh (for some h ∈ [q]) and σ = ζ (τ ), we link v(j, τ )(p + 1) to sσ (p)h , for each
p ∈ [t].
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Fig. 3. A sample of the construction of graph G. The edges incident to the rectangular boxes containing Tis are only incident to the root of the tree. For the
sake of readability, only one T (j, τ ) is represented. Here, v(j, τ ) represents an assignment of group X1 mapped to the permutation σ = (12).

This ends the construction of graph G (see Fig. 3 for an illustration). The number N of vertices of G is upper-bounded by
mq2⌈

n
q ⌉2t+1

+ 2s−1
+ qt = O(mq22t+ n

q ). The set
⋃

h∈[q]Sh is a feedback vertex set of G of size qt .
We now show that C is satisfiable if and only if Γ (G) ⩾ s. The proof goes as follows:
(1) Γ (G) ⩾ s if and only if r , the root of T , can be colored with color s;
(2) by Lemma 2 on T , this is equivalent to color a vertex in each Ij with color t + 2;
(3) by Lemma 2 applied to the set of all trees T (j, τ ), this is equivalent to a property (P) (that we will define later) on the

coloring of the cliques Sh’s;
(4) C is satisfiable implies (P);
(5) (P) implies C is satisfiable.
First, we show the equivalence (1) that Γ (G) ⩾ s if and only if r can be colored s. Assume that Γ (G) ⩾ s (the other

implication is trivial). By Observation 4, the only vertices (besides r) whose degree are (or at least may be) sufficient to be
colored s are r(s − 1) (but we already noticed in Lemma 1 that r(s − 1) can be colored s if and only if this is the case for r)
and the vertices of the cliques Sh’s. The vertices in N(Sh) have degree at most t + 1, hence their color can be at most t + 2.
Thus, the number of distinct colors that a vertex of Sh can see in its neighborhood is at most t + 2+ (t − 1) = 2t − 1. Hence,
its color cannot exceed 2t , which is strictly smaller than s. Hence, r (or r(s − 1)) has to be the vertex colored s.

To see that (2) holds, observe that, by Lemma 2 applied to the induced tree T and the set of parents F = {f1, . . . , fm} of
removed subtrees, Γ (G) ⩾ s if and only if there is a Grundy coloring of G−T coloring at least one vertex of Ij with color t +2,
without coloring any vertex of any Ij with color t + 3. This latter condition can be omitted, since, in order to color a vertex
with color t + 2, first coloring other vertices with color t + 3 or more is not helpful. We can now remove T from the graph
G and equivalently ask if one can color with t + 2 at least one vertex in each set Ij (j ∈ [m]) in this new graph G′.

For each j ∈ [m], for every vertex v(j, τ ) ∈ Ij, we apply Lemma 2 with the induced tree T (j, τ ) and the set of parents
{v(j, τ )(2), . . . , v(j, τ )(t +1)}: v(j, τ ) can be colored with color t +2 if and only if sσ (p)h can be colored with p, for each p ∈ [t],
without coloring first any vertex of T (j, τ ) (where σ = ζ (τ ) and τ is an assignment of the group Xh). As Sh is a t-clique,
receiving each color from 1 to t cannot benefit from coloring vertices of N(Sh) first. Thus, we will assume that all the Sh’s are
colored first.

We call (P) the property:
∀j ∈ [m], ∃v(j, τ ) ∈ Ij, such that ∀p ∈ [t], sζ (τ )(p)h has color p.

So far, we have shown that Γ (G) ⩾ s if and only if (P) holds. We now show that (P) holds if and only if C is satisfiable.
Assume C is satisfiable. Let ψ be a satisfying global assignment. Let τh be the projection of ψ to Xh for each h ∈ [q], and

σh = ζ (τh). We color the cliques Sh’s such that sσh(p)h is colored p, for each p ∈ [t]; that is, we first color sσh(1)h , then sσh(2)h , and
so on, up to sσh(t)h . Now, for each clause Cj, there is a literal of Cj which is set to true by ψ . Say, this literal is on a variable of
Xh for some h ∈ [q]. Then, the group assignment τh satisfies Cj. Therefore, for each j ∈ [m], vertex v(j, τh) ∈ Ij exists and
∀p ∈ [t], sζ (τh)(p)h has color p.

Assume now that the Sh’s has been colored first, and such that (P) holds. For each h ∈ [q], let σh be the permutation of
St such that σh(p) is defined as the index in Sh of the vertex colored p. This is well-defined since the vertices of the clique Sh
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Fig. 4. P1 and P2 for the instance {x1 ∨ ¬x2 ∨ x3}, {x1 ∨ x2 ∨ ¬x4}, {¬x1 ∨ x3 ∨ x4}, {x2 ∨ ¬x3 ∨ x4}.

have each color of [t] exactly once. Now, let τh be the assignment of the group Xh such that σh = ζ (τh). Group assignment
τh is unique since ζ is one-to-one, and exists for (P) to hold. Let ψ be the global assignment whose projection to each Xh is
τh. By (P), for each j ∈ [m], there is vertex v(j, τ ) ∈ Ij such that ∀p ∈ [t], sζ (τ )(p)h has color p, for some h ∈ [q]. This vertex
has in fact to be v(j, τh) since clique Sh has been colored such that sσh(p)h has color p. So, the group assignment τh satisfies Cj.
Therefore, ψ is a satisfying global assignment, hence C is satisfiable.

Suppose there is an algorithm solving Grundy Coloring on graphs with N vertices and feedback vertex set w in time
2o(w logw)Nc for some constant c . Recall that in G, we have N = O(mq22t+ n

q ) and w ⩽ qt . Assuming the ETH, there is
a constant s3 > 0 such that SAT (even 3-SAT) is not solvable in time O(2s3n). Setting q = ⌈

2c
s3

⌉, one can solve SAT

in time O(2qt log(qt)(mq)c22t2
cn
q ) = O(2o(3n( log n−log log n+log log q+log 3

log n−log q ))(mq)c2
6n

q log n/q 2
s3n
2 ) = O((mq)c2o(n)2o(n)2

s3n
2 ) that is O(2s3n),

contradicting the ETH. □

Note that in reduction of the proof of Theorem 15, we had 2o(s log s)
= 2o(n+m), so we even proved that Grundy Coloring

and Weak Grundy Coloring cannot be solved in time O∗(2o(k log k)2o(w logw)) unless the ETH fails (where k is the number of
colors).

4.3. Connected Grundy Coloring is NP-hard for k = 7 colors

Minimal connected Grundy k-witnesses, contrary to minimal Grundy k-witnesses (Observation 3), have arbitrarily large
order: for instance, the cycle Cn of order n (n > 4, n odd) has a Grundy 3-witness of order 4, but its unique connected Grundy
3-witness is of order n: the whole cycle.

Observe that Γc(G) ⩽ 2 if and only if G is bipartite. Hence, Connected Grundy Coloring is polynomial-time solvable for
any k ⩽ 3. However, we will now show that the problem is already NP-hard when k = 7, contrary to Grundy Coloring and
Weak Grundy Coloringwhich are polynomial-time solvable whenever k is a constant (Corollary 1 and Theorem 10). Thus,
in the terminology of parameterized complexity, Connected Grundy Coloring is para-NP-hard.

Theorem 16. Connected Grundy Coloring is NP-hard even for k = 7.

Proof. We give a reduction from 3-SAT 3-OCC, an NP-complete restriction of 3-SATwhere each variable appears in at most
three clauses [34], to Connected Grundy Coloringwith k = 7.We first give the intuition of the reduction. The construction
consists of a tree-like graph of constant order (resembling binomial tree T6) whose root is adjacent to two vertices of a K6
(this constitutesW ) and contains three special vertices a4, a21, and a24 (which will have to be colored with colors 1, 3, and 2
respectively), a connected graph P1 which encodes the variables and a path P2 which encodes the clauses. One in every three
vertices of P2 is adjacent to a4, a21 and a24. To achieve color 7, we will need to color those vertices with color strictly greater
than 3. This will be possible if and only if the assignment corresponding to the coloring of P1 satisfies all the clauses.

We now formally describe the construction. Let φ = (X = {x1, . . . , xn}, C = {C1, . . . , Cm}) be an instance of 3-SAT 3-OCC
where no variable appears always as the same literal. P1 = ({i1, i2, v} ∪ {vi, vi | i ∈ [n]}, {{i1, i2}, {i2, v}} ∪ {{v, vi} ∪ {v, vi} ∪

{vi, vi} | i ∈ [n]}) consists of n triangles sharing the vertex v. P2 = ({pj | j ∈ [3m− 1]}, {{pj, pj+1} | j ∈ [3m− 2]}) consists of
a path of length 3m − 1. For each j ∈ [m] and i ∈ [n], cj

def
= p3j−1 is adjacent to vi if xi appears positively in Cj, and is adjacent

to vi if xi appears negatively in Cj. For each j ∈ [m], cj is adjacent to a4, a21, and a24.
Intuitively, setting a literal to true consists of coloring the corresponding vertices with 3. Therefore, a clause Cj is satisfied

if cj has a 3 among its neighbors. To actually satisfy a clause, one has to color cj with 4 or higher. Thus, cj must also see a 2 in
its neighborhood. We will show that the unique way of doing so is to color p3j−2 with 2, so all the clauses have to be checked
along the path P2.

We give, in Fig. 5, a coloring of P1 corresponding to a truth assignment of the instance SAT formula. One can check that
when going along P2 all the cj’s are colored with color 4.

The constant gadgetW is depicted in Fig. 6. Thewaves between a4 and a6 and between a9 and a11 correspond, respectively,
to the gadgets encoding the variables (P1) and the clauses (P2) described above and drawn in Fig. 4. A connected Grundy
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Fig. 5. A connected Grundy coloring such that all the cj ’s are colored with color at least 4.

Fig. 6. The constant gadget. The doubly circled vertices are adjacent to all the cj ’s (j ∈ [m]).

Fig. 7. A connected Grundy coloring of the constant gadget achieving color 7. The order is given by the sequence (ai)1⩽i⩽33 .

coloring achieving color 7 is given in Fig. 7 provided that going from a9 to a11 can be done without coloring any vertex cj
with color 2 or less.

In the following claims, we use extensively Observation 4which states that a vertexwith degree d gets color atmost d+1.
We observe that coloring a vertex z of degree d with color d + 1 is only useful if the ultimate goal is to achieve color d + 1.
Indeed, for z to be colored with color d+1, all its neighbors have first to be colored (by each color from 1 to d), which means
that z cannot be used thereafter. Moreover, if one wants to color a neighbor y of a vertex x in order to color x with a higher
color, y cannot receive a color greater than its degree d(y). Hence, the only vertices that could achieve color k are vertices of
degree at least k − 1 having at least one neighbor of degree at least k − 1.

We call doubly circled vertices the special vertices a4, a21 and a24 (they are doubly circled in the figures).
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Claim 16.1. To achieve color 7, a27 needs to be colored with color 6 (while for all i ∈ [28, 33], ai is still uncolored).

Proof. One can achieve color 7 only in a vertex of degree at least 6 which has a neighbor of degree at least 6. There arem+7
vertices of degree at least 6: a28 and a33 (of degree 6), a27 (of degree 7), all the cj’s (of degree 8), v (of degree 2n + 2), a24 (of
degreem + 2), a21 (of degreem + 3), and a4 (of degreem + 4).

As each vertex cj is adjacent to a4, a21 and a24, we need to investigate the possibility of coloringwith color 7, a vertex cj, a4,
a21, or a24. A vertex cj has two neighbors of degree 2 (p3j−2 and p3j; or p3m−2 and a11 in the special case of cm), three neighbors
of degree at most 4 (the three vertices corresponding to the literals of Cj) since a literal has at most two occurrences, and
three vertices of degree more than m + 2 (a4, a21, and a24). So, if no doubly circled vertex is colored yet, a vertex cj can be
colored with a color at most 5. And if some doubly circled vertices are already colored but with always the same color, a
vertex cj can be colored with a color at most 6 (when the shared color of the doubly circled vertices is 5).

Let us show that the three doubly circled vertices a4, a21, and a24 cannot take two different colors both greater than or
equal to 5. Indeed, suppose that two of those three vertices are colored with colors p and q such that p < q and p, q ⩾ 5. The
doubly circled vertex colored with color q must have a vertex colored p in its neighborhood, but that color p cannot come
from a cj (since the vertex colored p is adjacent to the cj’s). Thus, this color pmust come from another neighbor. But, among
all the neighbors of the doubly circled vertices which are not a vertex cj, no vertex is of degree at least 5, a contradiction.

From the last two paragraphs, we conclude that none of the vertices a4, a21, a24, and the cj’s can receive color 7.
The only other pairs of adjacent vertices both of degree at least 6 are the pairs of the triangle formed by a27, a28 and

a33. We observe that a27 is a cut-vertex whose removal disconnects the clique K6 from the rest of the graph. Hence, in a
connected Grundy coloring, a27 cannot get a color higher than 6 since its degree in one part of this cut is 2 and in the other
part its degree is 5. Vertex a33 (or by symmetry a28) can be colored with color 7, but then a27 has to be colored with color 6
otherwise it will lack a vertex colored 6 in its neighborhood. The conclusion is that the only way to achieve color 7 is to color
a27 with color 6. □

Claim 16.2. Vertices a26, a22, a25, a23, a15 must receive color 1, 2, 3, 4, 5 respectively.

Proof. By Claim 16.1, a27 must be colored with color 6 before the clique K6 is colored. Thus, the five neighbors of a27 which
are not in the clique K6 must get all the colors from 1 to 5. Among those neighbors, the only vertex with degree 5 is a15,
so this vertex must get color 5. Vertices a23 and a25 both have degree 4 but for connectivity reasons a26 cannot be colored
before a25, so a25 cannot get a color higher than 3. Thus, a23 must get color 4. Vertex a22 can bring a 1 or a 2 to a27 while the
pair (a25, a26) can only bring the combinations (1, 2), (2, 1) or (3, 1). Thus, the unique way to bring 1, 2 and 3 to a27 is that
a25 is colored 3, a26 is colored 1, and a22 is colored 2. □

Claim 16.3. Vertex a7 must receive color 4.

Proof. By Claim 16.2, a15 has to receive color 5, so one of its four neighbors (apart from a27) must receive color 4. Only a7
and a12 have degree 4. But a12 cannot be colored 4 since its three neighbors a10, a11, and a13 (apart from a15) have only one
neighbor which is neither a12 nor a15, so none of these vertices can bring color 3 to a12. □

Claim 16.4. Vertex a3 must receive color 3.

Proof. By Claim 16.3, a7 must be colored 4. Thus, one of its three neighbors a3, a5, and a6 (apart from a15) must receive
color 3. Vertices a3 and a6 have two neighbors apart from a7. But if a6 is colored with color 3, then a4 must be colored 3 to let
colors 1 and 2 available for a3 and a5. In that case, a3 and a5 would both receive color 1. Another attempt is to color a1 (or a2)
with 1, a3 with 2 but then a4 has to be colored 1 and a5 can no longer be colored 1. Hence, only a3 can be colored with 3. □

Claim 16.4 has further consequences: we must start the connected Grundy coloring by giving colors 1 and 2 to a1 and
a2. The only follow-up, for connectivity reasons, is then to color a3 with color 3 and a4 with color 1. Thus, vertices a5 and a6
have to be colored with colors 2 and 1 respectively (so that a7 can be colored 4). As, by Claim 16.2, a25 must receive color 3,
a24 must receive color 2 (since a4 has already color 1), so a18 must be colored 1.

Claim 16.5. Vertex a21 must receive color 3.

Proof. By Claim 16.2, a23 must get color 4, so its three neighbors apart from a27 must receive colors 1, 2 and 3. As a20 must
be colored 1 (in order to color a22 with color 2), a21 will be colored 2 or 3. Suppose a21 is colored 2. Then, {a16, a17} must be
colored 1 and 3. Vertex a17 cannot be colored 1 since a18 must get color 1, so a16 must get color 1 and a17, color 3. In that
case, a17 lacks a vertex colored 2 in its neighborhood, and therefore cannot be colored 3. So, a21 has to be colored 3 and a19
has to be colored 2 (since a20 has to get color 1). □

A further consequence of Claim 16.5 is that a16 must be colored 2 and a17 must be colored 1 (the reverse being impossible,
since a18 has to be colored 1). More importantly, we have now established that all the colored cj’s (for each j ∈ [m]) have to
be colored with color 4 or higher. Indeed, we recall that the three doubly circled vertices (adjacent to all the cj’s) a4, a21, and
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a24 must respectively get color 1, 3, and 2. In particular, after having colored a1 up to a4, we cannot short-cut to P2 since it
will color a cj with 2, so we have to color i1 with 2, i2 with 1, and v with 2. As v must be colored with color 2, none of the
vertices encoding the literals can have color 2, so, again, we cannot short-cut from P1 to P2 otherwise, we would color a cj
with 2. Then, we can partly (or entirely) color P1 but we have to color a6 with 1, a8 with 2, and a9 with 1. As a9 is forced to
get color 1, a10 has to give a 2 to a12 and a11 is therefore forced to give color 1 to a12.

Claim 16.6. The unique way of coloring a11 with color 1 without coloring any vertex cj with color 1, 2, or 3 is to color all the cj’s
for each j ∈ [m].

Proof. We recall that the first four vertices to be colored are a1, a2, a3, When going along the path from a9 to a11, the only
vertex colored 2 which can be in the neighborhood of cj is p3j−2. Indeed, we recall that the vertices encoding literals cannot
be colored 2 since they are all adjacent to vwhich is colored 2. By induction, as the only way to color vertex p3j−2 with color 2
before cj is colored, is to color cj−1, we have to color all the vertices in the path P2. □

We remark that opposite literals are adjacent, so for each i ∈ [n], only one of vi and vi can be colored with color 3. We
interpret coloring vi with 3 as setting xi to true and coloring vi with 3 as setting xi to false.

Claim 16.7. To color each cj (j ∈ [m]) of the path P2 with a color at least 4, the SAT formula must be satisfiable.

Proof. Each cj must have a vertex colored 3 in its neighborhood, but this vertex cannot be a21 since this vertex cannot be
colored yet. We recall that a21 will be colored after a11 is colored. Thus, the vertex colored 3 can only belong to a set {vi, vi}
encoding a literal li such that li is in Cj. Indeed, the neighbors p3j−2 and p3j are of degree 2 and a4 is already colored 1. Hence,
there must be an assignment of the variables such that all the clauses of C are satisfied. As one cannot color both vi and vi
with color 3, the coloring of P1 does constitute a feasible assignment. □

So, to achieve color 7 in a connected Grundy coloring, the SAT formula must be satisfiable. The reverse direction consists
of completing the coloring by giving a13 color 1 and a14 color 2, as shown in Figs. 5 and 7. □

5. Concluding remarks and questions

To conclude this article, we suggest some questions which might be useful as a guide for further studies.
We have given two O∗(cn) exact algorithms for Grundy Coloring andWeak Grundy Coloringwith c a constant, but we

do not know whether such an algorithm exists for Connected Grundy Coloring.
There is a gap between the O∗(2O(wk)) algorithm of [37] and the lower bound of Theorem 15. Is Grundy Coloring in FPT

when parameterized by the treewidth w? A simpler question is whether there is a better O∗(f (k, w)) algorithm (as noted
in Observation 14, if f (k, w) = kO(w) we directly obtain an FPT algorithm for parameter w). It could also be simpler to first
determine whether Grundy Coloring is in FPT when parameterized by the feedback vertex set number (it is easy to see
that it is in FPT when parameterized by the vertex cover number).

Grundy Coloring (parameterized by the number of colors) is in XP, and we showed it to be in FPT on many important
graph classes. Yet, the central question whether it is generally in FPT or W[1]-hard remains unsolved. A perhaps more
accessible research direction is to settle this question on bipartite graphs.

It would also be interesting to determine the (classic) complexity of Grundy Coloring on interval graphs and chordal
bipartite graphs (the latter question being asked in [35]). Also, we saw that the algorithm of [37] implies a quasi-polynomial
algorithm for planar (even apex-minor-free) graphs,making it unlikely to beNP-complete on this class. Is there a polynomial-
time algorithm for such graphs?

We also recall that the exact polynomial-time approximation complexity of Grundy Coloring and Weak Grundy
Coloring is unknown; it is known that they admit no PTAS [17,27], but no o(n)-factor polynomial-time approximation
algorithm is known. Recently, it was proved that for any r > 1,Grundy Coloring can be r-approximated in timeO∗(cn log r/r )
for some constant c , where n is the graph’s order [7]. The approximation complexity of Connected Grundy Coloring has
not yet been studied.

Regarding Connected Grundy Coloring, we showed that it remainsNP-complete even for k = 7. As Connected Grundy
Coloring is polynomial-time solvable for k ⩽ 3, its complexity status for k = 4, 5, 6 remains open. It would also be
interesting to study Connected Grundy Coloring on restricted graph classes.
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