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a b s t r a c t

A set D of vertices of a graph G is locating if every two distinct vertices outside D have
distinct neighbors in D; that is, for distinct vertices u and v outside D, N(u) ∩ D ≠

N(v) ∩ D, where N(u) denotes the open neighborhood of u. If D is also a dominating set
(total dominating set), it is called a locating-dominating set (respectively, locating-total
dominating set) of G. A graph G is twin-free if every two distinct vertices of G have distinct
open and closed neighborhoods. It is conjectured (Garijo et al., 2014 [15]) and (Foucaud and
Henning, 2016 [12]) respectively, that any twin-free graph Gwithout isolated vertices has
a locating-dominating set of size at most one-half its order and a locating-total dominating
set of size atmost two-thirds its order. In this paper, we prove these two conjectures for the
class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely
many connected line graphs for which equality holds in the bounds.

© 2016 Published by Elsevier B.V.

1. Introduction

In this paper, we prove two recent conjectures on locating-dominating sets and locating-total dominating sets in graphs
for the class of line graphs. In order to state these conjectures, we define the necessary graph theory terminology that we
shall use. A dominating set in a graph G is a set D of vertices of G such that every vertex outside D is adjacent to a vertex in D,
while a total dominating set, abbreviated TD-set, ofG is a dominating setwith the additional property that every vertex inside
D is also adjacent to a vertex in D. The domination number, γ (G), and the total domination number of G, denoted by γt(G),
is the minimum cardinality of a dominating set and a TD-set, respectively, in G. The literature on the subject of domination
parameters in graphs up to the year 1997 has been surveyed and detailed in the two books [17,16], and a recent book on
total dominating sets is also available [21].

A neighbor of a vertex v in G is a vertex adjacent to v in G, while the open neighborhood of v is the set of all neighbors of v
in G. The closed neighborhood of v consists of all neighbors of v together with the vertex v. A graph is twin-free if every two
distinct vertices have distinct open and closed neighborhoods.

Among the existing variations of (total) domination, the one of location-domination and location-total domination are
widely studied. A set D of vertices locates a vertex v ∉ D if the neighborhood of v within D is unique among all vertices in
V (G)\D. A locating-dominating set is a dominating set D that locates all the vertices in V (G)\D, and the location-domination
number of G, denoted γL(G), is the minimum cardinality of a locating-dominating set in G. A locating-total dominating set,
abbreviated LTD-set, is a TD-set D that locates all the vertices, and the location-total domination number of G, denoted γ L

t (G),
is the minimum cardinality of a LTD-set in G. The concept of a locating-dominating set was introduced and first studied by
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Slater [26,27] (see also [9,10,14,25,28]), and the additional condition that the locating-dominating set be a total dominating
set was first considered in [18] (see also [1–3,5–7,19,20]).

A classic result in domination theory due to Ore [24] states that every graph without isolated vertices has a dominating
set of cardinality at most one-half its order. This bound is tight and the extremal examples have been classified, see [23]. As
observed in [14], while there are many graphs (without isolated vertices) which have location-domination number much
larger than one-half their order, the only such graphs that are known contain many twins. For example, for the complete
graph Kn of order n, we have γL(Kn) = n − 1 for all n ≥ 3. It was therefore recently conjectured by Garijo et al. [15] that for
sufficiently large values of the order and in the absence of twins andmultiple components, the classic bound of one-half the
order for the domination number also holds for the location-domination number.

Conjecture 1 (Garijo, González, Márquez [15]). There exists an integer n1 such that for any n ≥ n1, the maximum value of the
location-domination number of a connected twin-free graph of order n is ⌊

n
2⌋.

We proposed in [13,14] the following strengthening of Conjecture 1.1

Conjecture 2 (Foucaud, Henning, Löwenstein and Sasse [13,14]). Every twin-free graph G of order n without isolated vertices
satisfies γL(G) ≤

n
2 .

Garijo et al. [15] proved that for any n ≥ 14, themaximumvalue of the location-domination number of a connected twin-
free graph is at least ⌊

n
2⌋. Thus, together with this fact, the statement of Conjecture 2 implies the statement of Conjecture 1.

A classic result in total domination theory due to Cockayne et al. [8] states that every graph with components of order
at least 3 has a TD-set of cardinality at most two-thirds its order. This bound is tight and the extremal examples have been
classified, see [4]. As observed in [12], while there are many such graphs which have location-total domination number
much larger than two-thirds their order, the only such graphs that are known contain many twins. For example, for the star
K1,n−1 of order n, we have γ L

t (K1,n−1) = n− 1 for all n ≥ 3. The authors in [12] conjectured that in the absence of twins, the
classic bound of two-thirds the order for the total domination number also holds for the locating-total domination number.

Conjecture 3 (Foucaud and Henning [12]). Every twin-free graph G of order n without isolated vertices satisfies γ L
t (G) ≤

2
3n.

In this paper, we focus on the class of line graphs. We prove the two conjectures for this class, and discuss extremal
examples. The key for this study is to define edge-locating-(total) dominating sets (similar to edge-dominating sets) and to
study this concept in general graphs.
Definitions and Notation. For notation and graph theory terminology, we in general follow [17]. Specifically, let G be
a graph with vertex set V (G), edge set E(G) and with no isolated vertex. The open neighborhood of a vertex v ∈ V (G)
is NG(v) = {u ∈ V | uv ∈ E(G)} and its closed neighborhood is the set NG[v] = NG(v) ∪ {v}. The degree of v is
dG(v) = |NG(v)|. For a set S ⊆ V (G), its open neighborhood is the set NG(S) =


v∈S NG(v), and its closed neighborhood

is the set NG[S] = NG(S) ∪ S. If the graph G is clear from the context, we simply write V , E, N(v), N[v], N(S), N[S] and d(v)
rather than V (G), E(G), NG(v), NG[v], NG(S), NG[S] and dG(v), respectively.

Given a set S of edges, we will denote by G − S the subgraph obtained from G by deleting all edges of S. For a set S of
vertices, G− S is the graph obtained from G by removing all vertices of S and removing all edges incident with vertices of S.
The subgraph induced by a set S of vertices (respectively, edges) in G is denoted by G[S]. A cycle on n vertices is denoted by
Cn and a path on n vertices by Pn. A complete graph on four vertices minus one edge is called a diamond. The girth of G is the
length of a shortest cycle in G. A leaf of G is a vertex of degree 1 in G, while a pendant edge of G is an edge of G with at least
one of its ends a leaf.

A rooted tree distinguishes one vertex r called the root. For each vertex v ≠ r of T , the parent of v is the neighbor of v on
the unique (r, v)-path, while a child of v is any other neighbor of v. A descendant of v is a vertex u ≠ v such that the unique
(r, u)-path contains v. Let D(v) denote the set of descendants of v, and let D[v] = D(v) ∪ {v}. The maximal subtree at v is
the subtree of T induced by D[v], and is denoted by Tv .

A set D is a dominating set of G if N[v] ∩ D ≠ ∅ for every vertex v in G, or, equivalently, N[D] = V (G). A set D is a total
dominating set of G if N(v) ∩ D ≠ ∅ for every vertex v in G, or, equivalently, N(D) = V (G). Two distinct vertices u and v
in V (G) \ D are located by D if they have distinct neighbors in D; that is, N(u) ∩ D ≠ N(v) ∩ D. If a vertex u ∈ V (G) \ D is
located from every other vertex in V (G) \ D, we simply say that u is located by D.

A set S is a locating set of G if every two distinct vertices outside S are located by S. In particular, if S is both a dominating
set and a locating set, then S is a locating-dominating set. Further, if S is both a total dominating set and a locating set, then
S is a locating-total dominating set (where S is a total dominating set of G if every vertex of G is adjacent to some vertex in
S). We remark that the only difference between a locating set and a locating-dominating set in G is that a locating set might
have a unique non-dominated vertex.

An independent set in G is a set of vertices no two of which are adjacent. The independence number of G, denoted α(G), is
the maximum cardinality of an independent set of vertices in G. The complement of an independent set in G is a vertex cover
in G. Thus if S is a vertex cover in G, then every edge of G is incident with at least one vertex in S.

1 Note that in [14], we mistakenly attributed Conjecture 2 to the authors of [15]. We discuss this in more detail in [13].
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A clique in G is a set of vertices that induce a complete subgraph. Given a graph G, the line graph L(G) of G is the graph
with vertex set E(G), and where two vertices of L(G) are adjacent if and only if the two corresponding edges share an end
in G. A graph is a line graph if it is the line graph of some other graph. Line graphs form an important subclass of claw-free
graphs.

Two different edges are neighbors if they are adjacent. Given an edge e in a graph G, let NG(e) be the set of edges that are
neighbors of e. We define NG[e] = NG(e) ∪ {e}. If G is clear from the context, we simply write NG[e] and NG(e) by N[e] and
N(e), respectively. Let D be a subset of edges in G. Two distinct edges e and f in E(G) \D are located by D if they have distinct
neighbors in D; that is, N(e) ∩D ≠ N(f ) ∩D. If an edge e ∈ E(G) \D is located from every other edge in E(G) \D, we simply
say that e is located by D.

We introduce the concept of an edge-locating-dominating set, in the flavor of an edge-dominating set. An edge-dominating
set in a graph G is a set D of edges of G such that every edge in E(G) \ D is adjacent to an edge in D, while an edge-total-
dominating set in a graph G is a set D of edges of G such that every edge in E(G) is adjacent to an edge in D. The related
concept of edge-identifying codewas studied in [11,22].

Let D be a subset of edges of a graph G. The set D is an edge-locating-dominating set if D is an edge-dominating set of G and
every pair of edges in E(G) \D is located by D, while the set D is an edge-locating-total-dominating set, abbreviated ELTD-set,
of G if D is an edge-total-dominating set of G and every pair of edges in E(G)\D is located by D. The edge-location domination
number, denoted γ ′

L (G), and the edge-location total domination number, denoted γ ′

t,L(G), of G is the minimum cardinality of
an edge-locating-dominating set and edge-locating-total-dominating set of G, respectively.

An edge-dominating set D of graph G is a weak edge-locating-dominating set, abbreviated WELD-set, if for every pair e, f
of edges in E(G) \ D that are not edge-twins, N(e) ∩ D ≠ N(f ) ∩ D. The weak edge-location-domination number, denoted
γ ′

wL(G), of G is the minimum cardinality of a WELD-set of G.
We use the standard notation [k] = {1, 2, . . . , k}.

Known Results. Conjecture 2 remains open, although it was proved for a number of important graph classes.

Theorem ([13–15]). The statement of Conjecture 2 is true if the twin-free graph G of order n (without isolated vertices) satisfies
any of the following conditions.

(a) [15] G has no 4-cycles.
(b) [15] G has independence number at least n

2 .
(c) [15] G has clique number at least ⌈

n
2⌉ + 1.

(d) [14] G is a split graph.
(e) [14] G is a co-bipartite graph.
(f) [13] G is a cubic graph.

Conjecture 3 also remains wide open, although it was proved for graphs with no 4-cycles. The conjecture was also shown
to hold asymptotically for large minimum degree.

Theorem ([12]). The statement of Conjecture 3 is true if the twin-free graph G of order n (without isolated vertices) satisfies
any of the following conditions.

(a) G has no 4-cycles.
(b) G has minimum degree at least 26 and moreover, either:

(i) has independence number at least n
2 ,

(ii) has clique number at least ⌈
n
2⌉ + 1,

(iii) is a split graph, or
(iv) is a co-bipartite graph.

Edge-Twins. Two distinct vertices u and v of a graph G are open twins if N(u) = N(v) and closed twins if N[u] = N[v]. Recall
that u and v are twins in G if they are open twins or closed twins in G, and that a graph is twin-free if it has no twins.

Two edges e and f of G are open edge-twins if N(e) = N(f ); they are closed edge-twins if N[e] = N[f ]. Further, e and f are
edge-twins of G if they are open edge-twins or closed edge-twins of G. A graph is edge-twin-free if it has no edge-twins. The
paw graph, which we denote by K+

3 , is the graph obtained by adding a pendant edge to a K3. We denote the graph K4 minus
one edge by K4 − e, where e denotes an edge of the K4. We shall need the following properties of edge-twins.

Observation 4. If G is a connected graph with edge-twins, then the following properties hold.

(a) A pair of open edge-twins in G have no end in common, while a pair of closed edge-twins in G have an end in common.
(b) If G contains a pair of open edge-twins, then G is isomorphic to one of P4, C4, K+

3 , K4 − e or K4.
(c) If G contains a pair of closed edge-twins e and f , then e and f have an end in common, say the vertex v. Further, if e = uv

and f = vw, then every edge adjacent to e or f is either the edge uw or is incident with the vertex v. In particular, u and w
both have degree 1 or both have degree 2. We call u and w the non-shared ends of the closed edge-twins e and f .

(d) An edge cannot have both an open edge-twin and a closed edge-twin.
(e) An edge has at most one open edge-twin.
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(f) Let an edge e have a closed edge-twin f . If the non-shared ends of e and f have degree 2, then f is the unique closed edge-twin
of f , while if the non-shared ends of e and f have degree 1, then it is possible for e to have any number k ≥ 0 of closed
edge-twins in addition to f .

OurResults.We prove both Conjectures 2 and 3 for the special case of line graphs in Sections 2 and 3, respectively.Moreover,
in each section we also discuss examples that are extremal with respect to the conjectured bounds.

2. Locating-dominating sets

In this section, we prove Conjecture 2 for line graphs. For this purpose, we shall need the following key result about
edge-location-domination in graphs.

Theorem 5. Every graph on m edges and without isolated edges has a weak edge-locating-dominating set of size at most m
2 .

Proof of Theorem 5. Suppose, to the contrary, that the statement is false. Among all counterexamples, let G be one of
minimum size m ≥ 2. Thus, G is a graph on m edges and without isolated edges satisfying γ ′

wL(G) > m
2 . However, every

graph G′ on m′ edges, where m′ < m, and without isolated edges satisfies γ ′

wL(G
′) ≤

m′

2 . The statement of the theorem
is clearly true for every such graph with two or three edges, namely for the graphs P3, K1,3, P4, and C3. Hence, m ≥ 4. In
order to prove some structural properties of G, we will remove a selected set S of edges from G to build a subgraph G′ of G
of sizem′ < mwith no isolated edge. By the minimality of G, we can consider a WELD-set D′ of G′ of size at mostm′/2. The
idea will be to extend the set D′ to a WELD-set D of G by adding to it at most |S|/2 edges. To do so, it is sufficient to show
that:
(i) every edge of S that is not in D is located from any other edge of E(G) \ D, and that
(ii) every pair of edges in E(G) \ D that are edge-twins in G′ but not in G, are located by D.

We now prove a series of claims on the structure of G.

Claim 5.A. G is connected.
Proof of Claim. If G is not connected, wemay apply theminimality of G to each of its components to show that γ ′

wL(G) ≤
m
2 ,

contradicting the fact that G is a counterexample. �

Claim 5.B. G is edge-twin-free.
Proof of Claim. We shownext thatG has no open edge-twins. Suppose, to the contrary, thatG has a pair of open edge-twins,
e and f say. Thus, N(e) = N(f ) and e and f have no end in common. Further, every edge adjacent with e is adjacent with f ,
and conversely. This implies that G has order 4. Since G has size m ≥ 4, either G ∼= C4 or G ∼= K4 or G ∼= K4 − e, where e
denotes an edge of the K4, or G is obtained from a 3-cycle by adding a pendant edge. If G ∼= K4, then γ ′

wL(G) = 3 =
m
2 , while

if the other three cases, γ ′

wL(G) = 2 ≤
m
2 . This contradicts the fact that G is a counterexample. Therefore, G has no open

edge-twins.
We show finally that G has no closed edge-twins. Suppose, to the contrary, that G has a pair of closed edge-twins, e and f

say. Thus, N[e] = N[f ] and e and f have an end in common, say the vertex v. Let e = uv and f = vw. If h is an edge adjacent
to e or f , then either h = uw or h is incident with the vertex v. Let G′

= G − {u, w}. By Claim 5.A, the graph G is connected,
and therefore so too is G′.

Suppose that h = uw is an edge of G, and so vuwv is a triangle in G and G′ has size m′
= m − 3. Every other edge

adjacent to e or f is incident with the vertex v. In particular, dG(u) = dG(w) = 2. Since G has no open edge-twins, we
note that G has order n ≥ 5. Thus, G′ has no isolated edge. Let D′ be a minimum WELD-set in G′. By the minimality of G,
|D′

| = γ ′

wL(G
′) ≤ m′/2 = (m − 3)/2. The set D′

∪ {h} is a WELD-set in G, and so γ ′

wL(G) ≤ |D′
| + 1 < m/2, a contradiction.

Thus, uw is not an edge of G, implying that both u and w have degree 1 in G, and G′ has size m′
= m − 2. Every edge

adjacent to e or f is incident with the vertex v. Since m ≥ 4, G′ has no isolated edge. Let D′ be a minimum WELD-set in G′.
By the minimality of G, |D′

| = γ ′

wL(G
′) ≤ m′/2 = (m− 2)/2. If no edge incident with the vertex v in G′ belongs to the set D′,

then D′
∪{e} is aWELD-set in G, and so γ ′

wL(G) ≤ |D′
|+1 ≤ m/2, a contradiction. Therefore, there is an edge e′, say, incident

with v that belongs to the set D′. If the set D′ is a WELD-set of G, then γ ′

wL(G) ≤ |D′
| < m/2, a contradiction. Therefore, the

set D′ is a WELD-set of G′ but not of G.
Since D′ is not a WELD-set of G′ and since D′ contains at least one edge incident with v, namely the edge e′, this implies

that there must exist an edge f ′ incident with v in G′ such that (a) f ′
∉ D′, (b) f ′ is only adjacent to edges of D′ that are

incident with v, and (c) f ′ is adjacent to an edge that is not incident with the vertex v. Thus, in the graph G, the edges e and
f ′ are not (closed) twins and they are not located by D′. If there exists another edge, f ′′ say, that also satisfies (a), (b) and (c),
then f ′ and f ′′ would be closed twins in G′. Further, letting f ′

= vv′ and f ′′
= vv′′, we note that v′v′′ is an edge. However,

such an edge is not dominated by D′, a contradiction. Therefore, the edge f ′ is unique. Thus the set D′
∪ {f ′

} is a WELD-set in
G, and so γ ′

wL(G) ≤ |D′
| + 1 ≤ m/2, a contradiction. �

Claim 5.C. G has a cycle.
Proof of Claim. For the sake of contradiction, suppose that G is a tree. Consider a longest path in G, say from vertex r to
vertex u, and root the tree at r . Let v be the parent of u, and let w be the parent of v. Since by Claim 5.B G is edge-twin-free,
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we have d(v) = 2. Let S = {uv, vw} and let G′
= G − S. Since G is a connected graph of size at least 4 and since d(v) = 2,

the graph G′ has no isolated edge. By the minimality of G, γ ′

wL(G
′) ≤

m′

2 =
m
2 − 1. Let D′ be a minimum WELD-set of G′.

We claim that D′
∪ {vw} is a WELD-set of G. Indeed, every edge in G′ is dominated by some edge of D′, hence uv is the

only edge of V (G) \ D dominated only by vw and (i) is satisfied. Moreover, if there were any edge-twins in G′ that are no
longer edge-twins in G, these edge-twins would now be located by vw, proving (ii). Hence, G is not a counterexample, a
contradiction. �

Claim 5.D. G has no K4 as a subgraph.

Proof of Claim. Suppose, to the contrary, that there is a K4-subgraph, K say, of G on vertices x, y, z, t . We remove from G
all edges of K , as well as additional edges, if any, that would be isolated in G − E(K), and call the resulting graph G′. By the
minimality of G, γ ′

wL(G
′) ≤ |E(G′)|/2. Let D′ be a minimum WELD-set of G′. We let D = D′

∪ {xy, xz, xt} and claim that D is
a WELD-set of G. Indeed, it is clear that all edges of E(G) \ E(G′) are located: every edge of E(K) \ D is uniquely determined
by a pair of edges of E(K) ∩ D, and every edge that would have been isolated in G − E(K) is the only edge in E(G) \ D
dominated either by all of xy, xz, xt or by exactly one of them. Hence, D satisfies condition (i). Moreover any pair of edge-
twins of G′ that are no longer edge-twins in Gwould be located by some edge in E(K)∩D. Hence G is not a counterexample,
a contradiction. �

Claim 5.E. If u, v, w induce a triangle in G and G′
= G − {uv, vw} has no isolated edge, then every WELD-set of G′ of size at

most |E(G′)|

2 does not contain the edge uw.

Proof of Claim. Let D′ be a WELD-set of G′ of size at most |E(G′)|/2 and suppose, to the contrary, that uw ∈ D′. Let
D1 = D′

∪ {uv}. If D1 satisfies both (i) and (ii), then G is not a counterexample, a contradiction. Hence, (i) or (ii) are not
satisfied by D1. Suppose that there were two edge-twins e, e′ in G′ that are no longer edge-twins in G, which means one of
them, say e, is adjacent to at least one of uv and vw. If the edge e is incident with v, then e is not adjacent to the edge uw.
Thus, since e and e′ are edge-twins in G′, the edge e′ is not adjacent to uw, implying that the edges e and e′ are located by uv
and therefore by D. Analogously, if the edge e is incident with u (respectively,w), then e′ is incident withw (respectively, u),
implying that e and e′ are located by uv and therefore by D1. Hence, (ii) is satisfied by D1. Therefore, (i) is not satisfied by D1.

Since (i) is not satisfied by D1, there is an edge e ∉ D1 with N(e) ∩ D1 = N(vw) ∩ D1. In particular, {uv, uw} ⊆ N(e),
implying that e is incident with u. Repeating the same argument with D2 = D′

∪ {vw}, (ii) is satisfied by D2 and (i) is not
satisfied by D2, which implies the existence of an edge e′ incident with w satisfying N(e′) ∩ D2 = N(uv) ∩ D2.

Let e = ux, and note that x ∉ {u, v, w}. We show that N(e) ∩ D1 = {uv, uw}. Suppose, to the contrary, that the edge e is
dominated by some edge f ∈ D1 different from uv and uw. Since the edge vw must also dominated by f , either f = vx or
f = wx. Suppose firstly that f = vx. If wx ∈ E(G), then G[{u, v, w, x}] ∼= K4, contradicting Claim 5.D. Therefore, wx ∉ E(G).
In this case, the edge vx ∈ D′ locates the edges uv and e′ with respect to the setD2, and so (i) is satisfied byD2, a contradiction.
Suppose secondly that f = wx. In this case, by Claim 5.D, vx ∉ E(G) and the edge f ∈ D′ locates the edges uv and e′ with
respect to the set D2, and so (i) is satisfied by D2, a contradiction. Since both cases produce a contradiction, we deduce that
N(e) ∩ D1 = {uv, uw} and that the edge e was only dominated by uw in D′. Analogously, N(e′) ∩ D2 = {vw, uw} and the
edge e′ was only dominated by uw in D′. This means that e and e′ had to be edge-twins in G′. We proceed further with the
following subclaim.

Claim 5.E.1. The edges e and e′ are closed edge-twins in G′.

Proof of Claim. Suppose, to the contrary, that e and e′ are open edge-twins in G′. Let e = uu′ and e′
= ww′. By

Observation 4(a), u′
≠ w′. Suppose there is an edge f , different from uw, that is adjacent to both e and e′. Then, f ∈

{u′w′, uw′, wu′
}. Recall that the edge e (respectively, e′) is only dominated by uw inD′. If f = u′w′, then f is not be dominated

by D′, a contradiction. If f ∈ {uw′, wu′
}, then N(f )∩D′

= N(e)∩D′
= {uw}, a contradiction since e and f are not edge-twins

in G′. Therefore, uw is the only edge adjacent to both e and e′. Moreover there is no other edge incident with u or w, since e
and e′ are edge-twins in G′. Hence, the component of G′ containing uw only contains the edges uw, e and e′.

If E(G) = {uv, vw, uw, e, e′
}, then the set {uv, vw} is an edge-locating-dominating set in G, implying that m = 5 and

that G has a WELD-set of size less than m/2, a contradiction. Hence, since G′ has no isolated edge, the component of G′

containing the vertex v has size at least 2. We now consider the graph G′′
= G − {uv, vw, uw, e, e′

}. We note that since G′

has no isolated edge, neither does G′′. By the minimality of G, γ ′

wL(G
′′) ≤ |E(G′′)|/2. Let D′′ be a minimum WELD-set of G′′

and let D3 = D′′
∪ {uv, vw}. The edge e is the only edge dominated solely by uv, and the edge e′ is the only edge dominated

solely by vw. The edge uw is dominated by both uv and vw, and if there were some other edge dominated only by both uv
and vw, it would not have been dominated by D′′, a contradiction. Hence, (i) is satisfied by D3. Moreover, (ii) is also satisfied
because for any pair of edge-twins of G′′ that are no longer edge-twins in G, exactly one of them would be incident with v
and hence they would be located by uv and vw. Thus, D3 satisfies both (i) and (ii), implying that G is not a counterexample,
a contradiction. �

By Claim 5.E.1, the edges e and e′ are closed edge-twins. Let x be the common vertex incident with both e and e′ (and so,
uwxu is a 3-cycle in G). By the same arguments as in the previous paragraph, we obtain that dG(u) = dG(w) = 3, and that no
edge incident with x is in D′. Let G′′′

= G− {e, e′, uv, vw, uw}. If G′′′ has an isolated edge e∗, then e∗ would be incident with
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v or with x but not to both since by Claim 5.D, G has no K4-subgraph. If e∗ is incident with v, then e∗ would be an isolated
edge in G′; iff e∗ is incident with x, then e∗ would not have been dominated by D′ in G′. Both cases produce a contradiction.
Hence, G′′′ has no isolated edge.

By the minimality of G, γ ′

wL(G
′′′) ≤ |E(G′′′)|/2 = (m− 5)/2. Let D′′′ be a minimumWELD-set of G′′′. If every pair of edge-

twins of G′′′ is also a pair of edge-twins of G, then we let D4 = D′′′
∪ {uv, vw}. Then, (ii) is trivially satisfied by D4, and by

the same arguments as for D3 in the proof of Claim 5.E.1, (i) is also satisfied by D4, implying that G is not a counterexample,
a contradiction. Hence, there is a pair of edge-twins of G′′′ that is not a pair of edge-twins in G. If there is no such edge
pair with one edge incident with x, we consider D5 = D′′′

∪ {uv, vw}, which is a WELD-set of G, implying that G is not
a counterexample, a contradiction. Analogously, if there is no such edge pair with one edge incident with v, we consider
D6 = D′′′

∪ {e, e′
}, which is a WELD-set of G, implying that G is not a counterexample, a contradiction. Hence, there must

have been a pair f , f ′ of edge-twins in G′′′ with f (but not f ′) incident with v, and such a pair g, g ′ with g (but not g ′) incident
with x.

We now consider the graph G′′′′
= G−{e, e′, uv, vw, uw, f , g}. Suppose that G′′′′ has an isolated edge, e∗. If e∗ is incident

with x or v, then we contradict the fact that f , f ′ and g, g ′ are edge-twins in G′′′. Hence, e∗
∈ {f ′, g ′

}. By symmetry, we
may assume that e∗

= f ′. Then, the only edge adjacent to f ′ is f , that is, f and f ′ are closed edge-twins with a common
end. Let f = vv1 and f ′

= v1v2. Thus, vv1v2 is a path in G, where dG(v2) = 1 and dG(v1) = 2. Further, dG(v) = 3 and
NG(v) = {u, v1, w}. We now consider the graph G∗

= G − {uv, vw, uw, e, e′, f , f ′
}. We note that u, v, v1, v2 and w are all

isolated vertices in G∗. Since G∗ has no isolated edge, we apply the edge-minimality to G∗ and obtain aWELD-set D∗ of G∗ of
size at most (m−7)/2, and let D7 = D∗

∪{f , uv, uw, wx}. Both (i) and (ii) are satisfied by D7, implying that D7 is aWELD-set
of G and that G is not a counterexample, a contradiction. Therefore, G′′′′ has no isolated edge.

Applying the edge-minimality to G′′′′, we obtain a WELD-set D′′′′ of G′′′′ of size at most (m − 7)/2, and let D8 =

D′′′′
∪ {uv, vw, g}. By similar arguments as above, (i) is satisfied by D8. Assuming (ii) is not satisfied by D8 for some pair

h, h′, then one of these edge-twins of G′′′′ must be adjacent to f or g .
Suppose that h (but not h′) is adjacent to f . If h is incident with v, we are done because h, h′ are located by uv, vw.

Otherwise, since f , f ′ were edge-twins in G′′′, f ′ is adjacent to h, and hence to h′ since h, h′ are edge-twins in G′′′′. Thus,
h, h′, f ′ form a triangle. But then h′ cannot be adjacent to f (otherwise h and h′ are edge-twins of G), contradicting the fact
that f , f ′ were edge-twins in G′′′. Therefore, one of the edge-twins, h or h′, of G′′′′ must be adjacent to g .

Thus, suppose that h (but not h′) is adjacent to g . Recall that the edge g is incident with the vertex x (assume g = xy),
but the edge g ′ is not incident with x. If h is incident with x, assume that h = xz. Then, since g and g ′ are edge-twins in G′′′,
g ′ must be incident with z. Moreover, either g ′

= h′ and it is adjacent to g (in which case g, g ′, h form a triangle in G and g
and g ′ are closed edge-twins of G′′′), or g ′

≠ h′ (in which case g, g, g ′, h′ form a 4-cycle in G and g, g ′ and h, h′ are pairs of
open edge-twins in G′′′ and G′′′′, respectively). In the former case when g ′

= h′, no edge other than e or e′ is adjacent to any
of g, g ′, h. But then, g and h are edge-twins in G itself, a contradiction to Claim 5.B. In the latter case when g ′

≠ h′, we let t
be the common end of g ′ and h′. The only possible additional edges that can be adjacent to g, g ′, h or h′ in G are the edges xt
and yz (and at most one of themmay exist, for otherwise G contains a K4, contradicting Claim 5.D). By the choice of the pair
h, h′, we know that D8 does not locate h and h′. Thus, none of these two edges belongs to D′′′′. Then, either none of xt and
yz exists and g ′

∈ D′′′′, or one of xt and yz exists, in which case both this edge and g ′ belong to D′′′′. In both cases, we could
remove g ′ from D8 and replace it with h to obtain D′

8. The resulting set D′

8 satisfies both (i) and (ii) and thus it is a WELD-set
of G of size at mostm/2, a contradiction. Therefore, none of h, h′ is incident with x. Thus, h is incident with the vertex y. The
pair h, h′ would be located by g unless both h, h′ are incident with the vertex y. But then h, h′ are edge-twins in G itself, a
contradiction to Claim 5.B.

Therefore, we have proved that D8 satisfies both (i) and (ii), implying that D8 is a WELD-set of G of size at most m/2 and
that G is not a counterexample, a contradiction. This completes the proof of the claim. �

Claim 5.F. No triangle of G contains a vertex of degree 2.

Proof of Claim. Suppose, to the contrary, that G contains a triangle uvwu with dG(v) = 2. Let G′
= G − {uv, vw}. Since G

is edge-twin-free and dG(v) = 2, we note that dG(u) ≥ 3 and dG(w) ≥ 3, implying that G′ has no isolated edge. Applying
the edge-minimality to G′, there is a WELD-set D′ of G′ of size at most m

2 − 1. By Claim 5.E, the edge uw ∉ D′. In order to
dominate the edge uw, wemay assume, renaming u andw if necessary, that some edge ux incident with u belongs to D′. We
now consider the set D = D′

∪ {uv}. The edge vw is the only edge dominated by uv but not ux, hence (i) is satisfied by D.
Moreover, if (ii) was not satisfied by D, we would have a pair, e, e′ of edge-twins in G′, at least one of which must be incident
with u or w.

Suppose that e = uw. If e, e′ are open edge-twins of G′, then G′ has order 4 and G is either obtained from a triangle and a
4-cycle by identifying one of their edges (potentially adding an edge between two opposite vertices of the 4-cycle), or from
a diamond by adding a leaf to a vertex of degree 2. But in either case, it is easily checked that G has a WELD-set of size 3,
a contradiction. Thus, assume that e, e′ are closed edge-twins in G′. If e′ is not incident with u, then e′

= xw and the pair
e, e′ would be located by the edge uv in D, a contradiction. Hence, e′ is incident with u. Let e′

= uy. By Observation 4(c),
the non-shared ends of e and e′, namely w and y, both have degree 1 or both have degree 2 in G′. Since dG(w) ≥ 3, w and y
both have degree 2 in G′. Then, wy is an edge. In this case, wy ∈ D′, for otherwise the edge wy would not be dominated by
D′ in G′. However, (i) and (ii) would now both be satisfied by the set D′

∪ {vw}, implying that G is not a counterexample, a
contradiction.
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Therefore, e ≠ uw. Analogously, e′
≠ uw. Moreover, the edge ux is distinct from e and from e′ since ux ∈ D′. This implies

that if both e and e′ are incident with u or both incident withw, then e, e′ would be a pair of edge-twins in G, a contradiction.
Therefore, exactly one of e and e′ is incident with u and the other with w. The pair e, e′ would therefore be located by the
edge uv in D, a contradiction. �

Claim 5.G. G does not contain any diamond as a subgraph.

Proof of Claim. Suppose, to the contrary, that G contains a diamondM . Let V (M) = {x, y, z, t} where ty is the missing edge
inM . By Claim 5.D, the edge ty is not an edge of G. Consider the graph obtained from G by removing the edges ofM and any
resulting isolated edges, if any. Let G′ be the resulting subgraph. Applying the edge-minimality to G′, there is a WELD-set D′

of G′ of size at most |E(G′)|/2.
Suppose that G′ was obtained by removing at least six edges from G. In this case, we let D1 = D′

∪ {xy, xz, xt}. The edge
tz is the only edge dominated by both xt and xz (but not xy), while the edge yz is the only edge dominated by both xy and
xz (but not xt). Moreover any edge that would be isolated in G − E(M) is solely dominated by either a single edge or by all
three edges in {xy, xz, xt}, while every edge of G′ is dominated by a different set (notice that all edges of G′ are dominated by
some edge of D′). Hence, D1 fulfills (i). Moreover, any pair of edge-twins of G′ would be located by some edge that belongs
to the set {xy, xz, xt}, and so D1 satisfies (ii) as well, implying that G is not a counterexample, a contradiction. Hence, G′ was
obtained from G by removing only the five edges of diamondM .

Suppose that dG(x) = dG(z) = 3. In this case, we let D2 = D′
∪ {xy, xt}. Every pair of edge-twins of G′ would be located

by either xy or xt , and so D2 satisfies (ii). We show next that D2 also satisfies (i). If this is not the case, then renaming the
vertices t and y if necessary, we may assume that the edge zt is not located from some edge e ∈ E(G) \ D2. The edge emust
be incident with t , and since e was dominated by D′, there is an edge f of D′ incident with t .

We now consider the set D3 = D′
∪ {xz, xy}. Then, the edge yz is located by the edges xy and xz, the edge tz is located by

the edges f and xz, while the edge xt is located by three edges f , xy and xz in D3. Hence, D3 satisfies (i).
If (ii) is not satisfied by D3, there must be a pair of edge-twins of G′ with one of them incident with t: it must be e. Let e′

be its edge-twin in G′. If e, e′, f form a triangle, then the common end of e′ and f would have degree 2 in G, contradicting
Claim 5.F. Hence, e, e′, f induce a path on three edges with f the central edge of the path. Let ve and vf be the end of the edge
e and f , respectively, different from t , and let v′ be the end of e′ different from vf . Thus, v′vf tve is a path in G. If v′ve is an edge
of G, then this edge would not be dominated by D3. Hence, v′ve is not an edge of G. This in turn implies that vevf is not an
edge, for otherwise, ve would have degree 2 in G contradicting Claim 5.F. Hence, both v′ and ve have degree 1 in G, while vf
has degree 2 in G. We now consider the graph G∗ obtained from G by removing the edges ofM and removing the three edges
e′, f and e. By our earlier assumptions, G∗ has no isolated edge. Applying the edge-minimality to G∗, there is a WELD-set D∗

of G∗ of size at most m/2 − 4. The set D∗
∪ {xy, xt, xz, f } satisfies both (i) and (ii), implying that G is not a counterexample,

a contradiction. Therefore, D3 satisfies (ii), once again implying that G is not a counterexample, a contradiction. Therefore,
at least one of x and z has degree at least 4.

We now remove the edges of the 4-cycle in the diamond M from G, and let G′′ denote the resulting graph, and so
G′′

= G − {xy, yz, zt, tx}. Since G − E(M) had no isolated edge and xz is not an isolated edge in G′′, the graph G′′ has no
isolated edge. Applying the edge-minimality to G′′, there is a WELD-set D′′ of G′′ of size at most |E(G′′)|/2 = m/2 − 2. If the
edge xz ∈ D′′, we let D4 = D′′

∪{xy, xt} and we can apply the same arguments as with D1 to produce a contradiction. Hence,
xz ∉ D′′. In order to dominate the edge xz, we may assume, renaming x and z if necessary, that there is an edge e incident
with x that belongs to D′′.

Let D5 = D′′
∪ {xy, zt}. Every pair of edge-twins of G′′ would be located by the three edges xy, zt and e, and so (ii) is

satisfied by D5. Since yt is not an edge of G, the edge yz is the unique edge dominated by both xy and zt but not e. Hence if
(i) is not satisfied by D5, then necessarily xt is not located from xz. This implies that no edge incident with z or t belongs to
D′′. In this case, we let D6 = D′′

∪ {yz, zt}. As before, D6 clearly satisfies (ii). If D6 does not satisfy (i), one of xy and xt is not
located from some edge. Renaming t and y if necessary, we may assume that xy is not located from some edge, which can
only be the edge uy, where u is the end of e different from x. But then, the edges uy and xz both were only dominated by the
edge e in D′′, implying that they are edge-twins in G′′. This in turn implies that either uz is an edge of G or d(u) = 2. If uz is
an edge, then {x, y, z, u} induce a K4 in G, contradicting Claim 5.D. If d(u) = 2, then we contradict Claim 5.F. Therefore, (i) is
satisfied by D6, implying that D6 must be aWELD-set of G, contradicting the fact that G is a counterexample. Hence, (i) must
have been satisfied by D5, once again implying that G is not a counterexample, a contradiction. �

Claim 5.H. G is triangle-free.

Proof of Claim. Suppose, to the contrary, that G contains a triangle T . Let V (T ) = {u, v, w}. By Claim 5.F, every vertex of T
has degree at least 3 in G. If every vertex of T has degree exactly 3 in G and each of their neighbors not in T has degree 1,
then G is determined and the three edges of the triangle form aWELD-set of size m

2 , a contradiction. Hence wemay assume,
renaming vertices if necessary, that v has degree at least 4 or v has degree 3 and its neighbor outside T has degree at least 2.
We let G′

= G − {uv, vw}. By the above assumption, G′ does not have any isolated edge. Applying the edge-minimality to
G′, there is a WELD-set D′ of G′ of size at most |E(G′)|/2 = m/2 − 1. By Claim 5.E, the edge uw ∉ D′. In order to dominate
the edge uw, the set D′ contains at least one edge incident with u or w.
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Suppose that D′ contains an edge, eu say, incident with u and an edge, ew say, incident with w. In this case, we consider
the set D1 = D′

∪ {vw}. Let u′ be the end of eu different from u, and let w′ be the end of ew different from w. By Claim 5.G, G
has no diamond, implying that u′

≠ w′ and uv is located by D1, which therefore satisfies (i). Moreover, if (ii) is not satisfied,
we would have two edge-twins of G′, exactly one of them incident with u, and the other incident with u′. But these three
edges would form a triangle with one vertex of degree 2, contradicting Claim 5.F. Therefore, renaming vertices if necessary,
we may assume that there is an edge ux in D′, but no edge incident with w belongs to D′.

We now consider the set D2 = D′
∪ {uw}. We show firstly that D2 satisfies (i). The edge uv is dominated by both uw

and ux. Since G is diamond-free by Claim 5.G, we note that the edge xw does not exist. Hence, the only possible edge in
E(G) \ D2 different from uv that is dominated by both uw and ux is incident with u, say it is uy. In this case, uy and uw were
not located by D′, hence they must have been edge-twins in G′. If wy is an edge, then this edge would not be dominated
by D′, a contradiction. If wx is an edge, then V (T ) ∪ {x} induce a diamond, a contradiction. Hence, d(w) = 2, contradicting
Claim 5.F. Hence, the edge uv is located by D2. It remains for us to consider the edge vw which is dominated by uw but not
by ux. Suppose there is an edge e in E(G) \ D2 different from vw that is dominated by uw but not by ux. Such an edge ewas
dominated by D′. Let f be an edge of D′ adjacent to e. By our earlier assumptions, the edge f is not incident with w. Since G
is diamond-free, the edge f is incident with neither u nor v. Thus, the edge f would locate the edges vw and e. Therefore, D2
satisfies (i).

We show next that D2 satisfies (ii). Let e and e′ be a pair of edges in E(G) \ D2 that are edge-twins of G′ but are not edge-
twins of G and suppose, to the contrary, that they are not located by D2. Renaming e and e′ if necessary, wemay assume that
v is incident with e but not to e′.

Suppose that e and e′ are not adjacent; that is, e and e′ are open edge-twins in G′. By Claim 5.G, G′ has no diamond. By
Observation 4(b), the component Cv of G′ containing the vertex v is therefore isomorphic to one of P4, C4, or K+

3 . If Cv
∼= C4

or if Cv
∼= K+

3 , then the WELD-set D′ contains both edges of Cv that are different from e and e′. In this case, simply removing
one of these edges from D′ and replacing it with one of e or e′ yields a new WELD-set D′

2 of G′ such that D2 = D′

2 ∪ {uw}

satisfies both (i) and (ii), implying that G is not a counterexample, a contradiction. Hence, Cv
∼= P4. We note that e and e′

are the pendant edges in Cv (that are incident with a vertex of degree 1 in Cv). Let f denote the central edge of the path P4
of Cv . Necessarily, f ∈ D′ in order to dominate the edges e and e′ in G′. We note that the vertex v may possibly be a vertex
of degree 1 or 2 in Cv . We now consider the graph G∗ obtained from G by deleting the three edges in T , deleting the three
edges in Cv , and deleting any resulting isolated edges. Applying the edge-minimality to G∗, there is a WELD-set D∗ of G∗ of
size at most |E(G∗)|/2 ≤ m/2 − 3. Using analogous arguments as before, the set D∗

∪ {uv, vw, f } can readily be shown to
satisfy (i) and (ii), implying that G is not a counterexample, a contradiction. Hence, the edges e and e′ are adjacent.

Let e = vv1 and e′
= v1v2. If vv2 is an edge of G, then vv1v2v would be a triangle in G with a vertex, namely v2, of

degree 2 in G, contradicting Claim 5.F. Hence, vv2 is not an edge, implying that v2 has degree 1 in G. Let G′′ be the subgraph
of G obtained by removing the edges {uv, vw, uw, vv1} and, if necessary, any isolated edge of the obtained graph (such an
edge may exist, if it is incident with u or w, for example). The resulting graph G′′ has no isolated edges. Applying the edge-
minimality to G′′, there is a WELD-set D′′ of G′′ of size at most |E(G′′)|/2 ≤ m/2 − 2. Using analogous arguments as before,
the set D′′

∪ {uv, uw} can readily be shown to satisfy (i) and (ii), implying that G is not a counterexample, a contradiction.
Therefore, D2 satisfies both (i) and (ii), once again implying that G is not a counterexample, a contradiction. �

By Claim 5.H, the graph G is triangle-free. By Claim 5.C, G has a cycle. We show next that G has no 4-cycle.

Claim 5.I. G does not contain any 4-cycles.

Proof of Claim. Suppose, to the contrary, that G contains a 4-cycle, C . Let C be given by u0u1u2u3u0. By Claim 5.H, C is an
induced 4-cycle. Let P be the set of edges, if any, that would be isolated in G − E(C). We note that if P ≠ ∅, then each edge
in P has one end in V (C) and its other end has degree 1 in G. In this case, we call the edge of P incident with ui the edge pi,
where i ∈ {0, 1, 2, 3}.

Suppose that E(G) = E(C) ∪ P . In this case, |P| ≥ 1 since by Claim 5.B G is edge-twin-free. If |P| = 1, then we may
assume that P = {p0}. In this case,m = 5 and {u0u1, u0u3} is aWELD-set, and so γ ′

wL(G) = 2 < m/2, a contradiction. Hence,
|P| ≥ 2. If 2 ≤ |P| ≤ 3, we may select three edges of C to form aWELD-set, while if |P| = 4, we may select all edges of C . In
all cases, γ ′

wL(G) ≤ m/2, a contradiction. Hence, E(G) ≠ E(C) ∪ P . Let G′
= G − (E(C) ∪ P). By the definition of P , the graph

G′ has no isolated edge. Applying the edge-minimality of G to G′, there is a WELD-set, D′, of G′ of size at most |E(G′)|/2.
Suppose that there is some edge, e′, of D′ incident with a vertex of C , say u0. Let D1 = D′

∪ {u0u1, u2u3, p2} if both p2 and
p3 exist; otherwise, let D1 = D′

∪ {u0u1, u2u3}. The only possibility that (ii) is not satisfied for D1 is the existence of a pair of
edges in E(G) \ D1 that form a triangle together with the edge u2u3, contradicting Claim 5.H. Moreover, (i) is also satisfied
for D1. For example, if u1u2 or u0u3 is not located from some other edge, such an edge could only be the edge u1u3 or u0u2,
respectively, but again this would imply the existence of a triangle in G, a contradiction. The edge p0, if it exists, is the only
edge dominated by both u0u1 and e′. Each edge pi, different from p0 and not in D1, is the only edge uniquely dominated by
its neighbor among {u0u1, u2u3}. Thus, D1 satisfies both (i) and (ii), implying that G is not a counterexample, a contradiction.
Hence, no edge of D′ is incident with a vertex of C .

Since no edge ofD′ is incidentwith a vertex of C , the edges ofG′ are therefore dominated byD′ but no edge ofD′ dominates
any edge of E(C) ∪ P , implying that all edges of G′ are located by D′ from all edges of E(C) ∪ P . Hence, if there is no pair of
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edges that are edge-twins in G′, it is easy to extend D′ to a WELD-set of G of at most m/2 edges. Therefore, we can assume
that there are edge-twins in G′ (but not G).

Let e and e′ be a pair of edges in E(G′) \ D′ that are edge-twins of G′ but are not edge-twins of G. By Observation 4, and
since G has no edge-twins, the edge e′ is the unique edge-twin of e, and conversely. If one of them, say the edge e, is incident
with exactly one vertex of the cycle C and the other, e′, is not incident with a vertex of C , we call the edge e a bad edge. Let
B be the set of bad edges in G′. Note that for any pair f and f ′ of edge-twins of G′ without any bad edge, if f and f ′ are open
edge-twins, they are adjacent to distinct vertices of C , and if they are closed edge-twins, they must be adjacent to opposite
vertices of C (otherwise we would have triangles in G).

Suppose |B|+|P| ≥ 2.Wenow consider the graphG′′
= G′

−B. At least six edgeswere removed fromGwhen constructing
G′′. We note that G′′ cannot have an isolated edge, because any pair e, e′ of edge-twins in G′ had a common neighbor in D′

and hence in G′′. Applying the edge-minimality of G to G′′, there is a WELD-set D′′ of G′ of size at most |E(G′′)|/2 ≤ m/2− 3.
The set D′′ can in this case be extended, using analogous arguments as before, to a WELD-set of G by adding to it any three
edges from the cycle C , implying that G is not a counterexample, a contradiction. Hence, |B| + |P| ≤ 1.

If |P| = 1, wemay assume, renaming the vertices of C if necessary, that P = {p2}. Further if |B| = 1, wemay assume that
the bad edge of G′ is incident with the vertex u2. We now consider the set D2 = D′

∪ {u1u2, u2u3}. Since P does not contain
the edge p1 or the edge p3, the edge u0u1 is located by D2, as is the edge u0u3. Thus, D2 satisfies (i). Note that any pair of
edge-twins of G′ without a bad edge is located by D2. Moreover, since B does not contain an edge incident with u0, the set
D2 also satisfies (ii), implying that G is not a counterexample, a contradiction. �

Claim 5.J. The girth of G is even.

Proof of Claim. Suppose, to the contrary, that the girth of G is odd. Let C be a shortest cycle in G and let C have length 2k+1.
By Claim 5.H, k ≥ 2. Let C be given by u0u1 . . . u2ku0. Let F = {u2i−1u2i | i ∈ [k]}, and note that |F | = k. If G = C , then
m = 2k + 1 and the set F is a WELD-set of G, and so γ ′

wL(G) ≤ k < m
2 , a contradiction. Hence, G ≠ C . Let P be the set of

edges, if any, that would be isolated in G − E(C). We note that if P ≠ ∅, then each edge in P has one end in V (C) and its
other end has degree 1 in G. In this case, we call the edge of P incident with ui the edge pi, where i ∈ {0, 1, . . . , 2k}.

We now define a set FP as follows. If P = ∅, let FP = ∅. If P ≠ ∅, then renaming vertices of C , if necessary, wemay assume
that p0 ∈ P and we define FP as follows. Let p0 ∈ FP and for i ∈ [k], if both p2i−1 and p2i exist, we add the edge p2i−1 to FP .

Suppose E(G) = E(C) ∪ P . Then, G consists of a cycle C with pendant edges attached to some vertices of C . Since G ≠ C ,
we note that in this case P ≠ ∅. The set F ∪ FP is a WELD-set of G of size at most m

2 , a contradiction. Hence, E(G) ≠ E(C)∪ P .
We now consider the graph G′

= G − (E(C) ∪ P). The graph G′ has no isolated edge. Applying the edge-minimality to G′,
there is a WELD-set D′ of G′ of size at most |E(G′)|/2. Let D1 = D′

∪ F ∪ FP . If P = ∅ and if there exists an edge of D′ incident
with some vertex of C , then renaming vertices of C , if necessary, we may assume that u0 is incident with an edge of D′.

Suppose that there is an edge of D′ incident with some vertex of C and let x be the end of such an edge that does not
belong to C . By our naming of the vertices of C , we note that either P ≠ ∅, in which case p0 ∈ FP , or P = ∅, in which case u0
is incident with an edge of D′. If some edge in E(C) \ D1 is not located from some edge of E(G′) \ D′ in G, then C would have
a chord or Gwould contain a triangle or there would be a 4-cycle that contains the vertex x, a contradiction. If some edge of
P \D1 is not located from some edge of E(G′) \D′, then this edge of G′ would have been undominated by D′, a contradiction.
Therefore, D1 satisfies (i). The only possibility that (ii) is not satisfied for D1 is the existence of a pair e and e′ of edges in
E(G)\D1 that form a triangle together with an edge of C , contradicting Claim 5.H. Hence, (ii) is also satisfied by D1, implying
that G is not a counterexample, a contradiction. Hence, no edge of D′ is incident with a vertex of C .

As before, if some edge in E(C)\D1 is not located from some edge of E(G′)\D′ in G, then wewould obtain a smaller cycle
in G than C or an edge of G′ not dominated byD′. Both possibilities are not possible. Hence,D1 satisfies (i). We show next that
D1 satisfies (ii). Let e and e′ be a pair of edges in E(G)\D1 that are edge-twins of G′ that are not edge-twins of G and suppose,
to the contrary, that they are not located by D1. This is only possible if P = ∅ and exactly one of e and e′ is incident with u0.
Renaming e and e′ if necessary, we may assume that u0 is incident with e but not with e′. If e and e′ are not adjacent, then in
this case, the component containing the vertex u0 in G′ is a path P4, say u0v1v2v3, where e = u0v1, e′

= v2v3 and v1v2 ∈ D′.
If e and e′ are adjacent, then in this case, there is a path P3 emanating from u0, say u0v1v2 where e = u0v1, e′

= v1v2,
dG(v2) = 1, and there is an edge of D′ incident with v1. In both cases, we consider the graph G′′

= G′
− e. We observe that

G′′ has no isolated edge and that 2(k + 1) edges were removed from G to obtain G′′. Applying the edge-minimality to G′′,
there is a WELD-set D′′ of G′′ of size at most |E(G′′)|/2 = m/2 − k − 1. The set D′′

∪ F ∪ {e} is now a WELD-set of G, and so
γ ′

wL(G) ≤ m/2, a contradiction. Hence, D1 satisfies both (i) and (ii), a contradiction. �

We now return to the proof of Theorem 5 one last time. By Claim 5.J, the girth of G is even. Let C be a shortest cycle in G
and let C have length 2k. By Claim 5.I, k ≥ 3. Let C be given by u0u1 . . . u2k−1u0. Let F = {u2iu2i+1 | i ∈ {0, 1, . . . , k − 1}},
and note that |F | = k. If G = C , thenm = 2k and the set F is a WELD-set of G, and so γ ′

wL(G) ≤ k =
m
2 , a contradiction. Let P

be the set of edge defined as in the proof of Claim 5.J. If P = ∅, let FP = ∅. If P ≠ ∅, then we define FP as follows. For i ∈ [k],
if both p2(i−1) and p2i−1 exist, we add the edge p2(i−1) to FP . If E(G) = E(C) ∪ P , then the set F ∪ FP is a WELD-set of G of size
at most m

2 , a contradiction. Hence, E(G) ≠ E(C) ∪ P . We now consider the graph G′
= G − (E(C) ∪ P). The graph G′ has no

isolated edge. Applying the edge-minimality to G′, there is aWELD-set D′ of G′ of size at most |E(G′)|/2. Let D1 = D′
∪ F ∪ FP .

If the set D1 does not satisfy (ii), we would have a triangle in G, a contradiction. If the set D1 does not satisfy (i), then either
C would have a chord, or some edge of G′ would not be dominated by D′, a contradiction in each case. Therefore, D1 satisfies
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(a) A family of trees. (b) Graphs of size 6.

Fig. 1. Edge-twin-free graphs with edge-location-domination number half the size. The thick edges are part of an optimal edge-locating dominating set.

both (i) and (ii), implying that G is not a counterexample, a contradiction. We deduce, therefore, that the counterexample G
could not have existed. This completes the proof of Theorem 5. �

As a special case of Theorem 5, we have the following result.

Theorem 6. If G is an edge-twin-free graph with m edges and no isolated edge, then γ ′

L (G) ≤
m
2 .

We remark that two edges are edge-twins in a graph G if and only if the corresponding vertices in the line graph, L(G),
of G are twins in L(G). Further, a set of edges in G is an edge-locating-dominating set of G if and only if the corresponding
set of vertices in the line graph L(G) of G is a locating-dominating set of L(G). The following is therefore a reformulation of
Theorem 6 in the language of line graphs.

Corollary 7. If G is a twin-free line graph of order n without isolated vertices, then γL(G) ≤
n
2 .

By Corollary 7, Conjecture 2 is true for the class of line graphs. We remark that Theorem 6 (and hence Corollary 7) is
tight in the sense that there are infinitely many edge-twin-free graphs Gwith edge-location-domination number |E(G)|

2 . For
example, consider the trees T built from a collection of vertex-disjoint paths each of length either 2 or 4 by selecting a leaf
from each path and identifying the selected vertices in one new vertex. Equivalently, T is obtained from a star by subdividing
some edges exactly once and subdividing the remaining edges exactly three times. Every edge-locating-dominating set in
such a tree T contains at least one edge from each branch of length 2 and at least two edges from each branch of length 4
in order to both dominate every edge and to locate the edges. Thus, γ ′

wL(T ) ≥ |E(T )|/2. By Theorem 6, γ ′

wL(T ) ≤ |E(T )|/2.
Consequently, γ ′

wL(T ) = |E(T )|/2.
For some additional (small) examples, let G be an edge-twin-free graph on six edges. Suppose, to the contrary, that there

is an edge-locating-dominating set, D, of size 2. Then, two edges of E(G) \ D can be dominated by a single edge, and one, by
two edges. But then G has at most five edges, a contradiction. Hence, the class of edge-twin-free graphs of size 6 has edge-
location-domination number 3 and yields a simple set of graphs that are extremal with respect to Theorem 6. See Fig. 1 for
an illustration.2

3. Locating-total dominating sets

In this section, we prove Conjecture 3 for line graphs. For this purpose, we shall need the following key result about
edge-locating-total-domination in graphs. Recall that we abbreviate an edge-locating-total-dominating set by an ELTD-set.

Theorem 8. If G is an edge-twin-free graph with m edges and no isolated edge, then γ ′

t,L(G) ≤
2
3m.

Proof of Theorem 8. The proof is similar to the proof of Theorem5, although it ismore direct sincewe do not need to use the
notion ofweak locating-total edge-dominating set. We use induction on the number,m, of edges in an edge-twin-free graph
with no isolated edge. We may restrict our attention to connected graphs, since we can apply the result to each component
of the graph. The claim of Theorem 8 is true for every (connected) graph on at most four edges (in fact there is only one such
edge-twin-free graph without isolated edges, namely the path P5 which satisfies γ ′

t,L(P5) = 2). This establishes the base
case. For the inductive hypothesis, suppose that m > 4 and that every edge-twin-free graph G′ with m′ < m edges and no
isolated edge satisfies γ ′

t,L(G
′) ≤

2
3m

′. Let G be an edge-twin-free (connected) graph Gwithout isolated vertices onm edges.
We now prove a series of claims depending on the structure of G.

2 We remark that the class of non-isomorphic, edge-twin free, connected graphs of size 6 can readily be found by computer (or can easily be deduced
by hand from the list of graphs of order 6 in [29]).
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Claim 8.A. If G is a tree, then γ ′

t,L(G) ≤
2
3m.

Proof of Claim. Suppose thatG is a tree. SinceG is edge-twin-free, the graphG has diameter at least 4. If diam(G) ∈ {4, 5, 6},
then the set of edges of G that are not pendant edges form an ELTD-set of size at most 2

3m, implying that γ ′

t,L(G) ≤
2
3m, as

desired. Therefore, we may assume that diam(G) ≥ 7. Consider a longest path in G, say from vertex r to vertex u, and root
the tree at r . Let v be the parent of u, let w be the parent of v, let x be the parent of w, and let y be the parent of x. Since G is
edge-twin-free, every vertex in G has at most one leaf-neighbor. In particular, dG(v) = 2. If the vertex y has a leaf-neighbor,
let G′ be the tree obtained from G by removing the vertex x and all its descendants in G; that is, G′

= G − D[x]. Otherwise,
let G′ be the tree obtained from G by removing only the descendants of x in G; that is, G′

= G − D(x). Since diam(G) ≥ 7,
we note that diam(G′) ≥ 4. Further since G is edge-twin-free, by construction the graph G′ is edge-twin-free. Therefore, we
can apply induction on G′. Let D′ be an ELTD-set of G′ of size at most 2

3 |E(G′)|. Let D be the set formed by D′
∪ {xw} together

with those edges of the subtree, Gx, of G rooted at xwhose endpoints both have degree at least 2. Equivalently, D is obtained
by adding to the set D′

∪ {xw} all edges of Gx that are not pendant edges in Gx. The resulting set D forms an ELTD-set of G of
size at most 2

3m, as desired. �

By Claim 8.A, we may assume that G has a cycle, for otherwise the desired result follows.

Claim 8.B. If G contains a triangle, then γ ′

t,L(G) ≤
2
3m.

Proof of Claim. Suppose that G contains a triangle T : uvwu. Let S0 be the set of edges containing the edges of each
component of G−{uv, uw, vw} that has at most four vertices. Let G′

= G[E(G)\ (E(T )∪ S0)]. Wewill now construct a set S1
of edges of G′ that will be removed from G′ in order to obtain an edge-twin-free subgraph G′′

= G[E(G) \ (E(T ) ∪ S0 ∪ S1)].
By Observation 4(a), ifG′ contains a pair of open edge-twins, then theywould belong to a component of order 4 inG′. Such

a component would be a component of G − {uv, uw, vw} of order 4, and therefore would not belong to G′, a contradiction.
Hence, G′ does not contain any pair of open edge-twins. However, G′ may contain some closed edge-twins.

If G′ contains a pair of closed edge-twins, then at least one of them is incident with a vertex of T . In fact, these two closed
edge-twins of G′ could be part of a set F of mutually closed edge-twins of G′, at least |F | − 1 of them being incident with a
(distinct) vertex of T (hence, |F | ≤ 4). Note that G′ contains at most three such sets of mutually closed edge-twins (at most
one for each vertex of T ). Moreover, if it contains three such sets, they are all of size 2; if it contains two such sets, one is
of size 2 and one is of size at most 3. Let F = {f1, . . . , fk} (2 ≤ k ≤ 4) be such a set of mutually closed edge-twins in G′.
Then, all the edges of F have a common endpoint x. Note that if |F | = 2, then possibly there is an edge (of T or G′) forming a
triangle with f1 and f2. Consider |F |− 1 edges of F each of which is incident with a (distinct) vertex of T . Let F ′

= {f2, . . . , fk}
denote these |F | − 1 edges of F . Removing F ′ from G′ clearly makes sure that the remaining edge, f1, of F has no closed
edge-twin in G′. However, f1 could now be an open edge-twin with some edge of G′, in which case F belongs to a component
of G′ induced by the vertices belonging to edges of F , together with an additional path xyz of length 2 attached to x, with
dG′(y) = 2 and dG′(z) = 1 (possibly, y or z, but not both, can belong to V (T )). We call such a component of G′ a bad twin
component of G′. Nevertheless, there is no other possibility of creating a new pair of edge-twins when removing F ′ from G′

(indeed, the only possibility could be, if |F | = 2, that f1 and f2 form a triangle with some edge of G′, and that this edge is
an open edge-twin with an edge incident with x; but then the edges of F are part of a component of G − {uv, uw, vw} of
order 4, a contradiction). Therefore, if F is not contained in a bad twin component of G′, we add F ′ to S1. Otherwise, we add
the entire edge set of the bad twin component containing F to S1. We repeat this process for each of the (at most three) sets
of mutually closed edge-twins of G′.

Now, considerG′′
= G[E(G)\(E(T )∪S0∪S1)], which is an edge-twin-free graphwith no isolated edges. Let |E(G′′)| = m′′.

Applying the inductive hypothesis to the graph G′′, there exists an ELTD-set, D′′, of G′′ of size at most 2
3m

′′.
Now, we build a set D from the set D′′ as follows. Initially, we let D = D′′. Let us first handle the edges of S0. We consider

each component C of G[S0] (which is also a component of G−{uv, uw, vw}) independently. Since G is connected, each such
component C has order at most 4 and must contain a vertex x ∈ {u, v, w}. If C has four vertices and at least five edges, we
add to D two edges that are incident with x, as well as a third edge of C (if there is a third edge of C incident with x, we
choose it; otherwise, we choose the edge forming a triangle with the first two selected edges). If C is isomorphic to C4, then
we add to D the two edges that are incident with x. If C has order 4 and size 4 and is different from C4, then C consists of
a triangle with a pendant edge added to one of the vertices of the triangle. In this case, by the edge-twin-freeness of G, the
vertex x belongs to the triangle of C and we add to D two edges of C incident with x. If C has order 4 and size 3, then by the
edge-twin-freeness of G, it must be isomorphic to P4 or K1,3. In the former case, we add to D two adjacent edges of C , at least
one of which is incident with x. In the latter case, G is isomorphic to K4 and E(T ) is an ELTD-set of G, so we are done. If C has
order 3, then since G is edge-twin-free, C is isomorphic to P3. In this case, we select an edge of C incident with x and add it
to D. For each P2-component of G − {uv, uw, vw}, we do not add the edge of this component to D.

Wenowhandle the edges of S1.We consider each component ofG[S1] independently. Let C be such a component. Suppose
first that C corresponds to a bad twin component of G′. Let {f1, . . . , fk} be the set of kmutually closed edge-twins in C , where
k ∈ {2, 3, 4}, and let x be the common vertex incident with these k edges. Further, let y be the degree 2 vertex in C adjacent
to x, and let z be the vertex of degree 1 in C adjacent to y. At least k−1 of the edges of {f1, . . . , fk} are incidentwith a (distinct)
vertex of T . Renaming edges if necessary, we may assume that f2, . . . , fk are incident with a vertex of T . Possibly, if k = 2,
f1 and f2 form a triangle with an additional edge of C , and possibly y or z (but not both) belong to V (T ). We now add the
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edge xy and the edges f2, . . . , fk to D. Moreover, if k = 2 and f1 and f2 form a triangle with a third edge of C (in this case, the
component C has five edges), then we also add f1 to D. Now, assume that C does not correspond to a bad twin component
of G′. Then, C is isomorphic to P2, P3 or to the claw K1,3, and each edge of C is incident with a distinct vertex of T . If C is a
P2-component, as for the P2-components of G[S0], we do not add any edge of C to D. If C is a P3-component, again, as for the
P3-components of G[S0], we add one of the two edges of C to D. If C is a K1,3-component, then G[E(T )∪S0 ∪S1] is isomorphic
to K4 and we add E(T ) to D.

Finally, we consider the edges of T . If G[E(T )∪ S0 ∪ S1] is isomorphic to K4, then we have added E(T ) to D in the previous
step; we do not add any further edge to D. Recall that each vertex of T is incident with at most one component of G[S0 ∪ S1].
If some P3-component of G[S0 ∪ S1] has its two edges incident with vertices of T , then we may assume these two vertices
are v and w, and we add uv and uw to D. Now, consider the components of G[S0 ∪ S1] that are isomorphic to P2. If each of
u, v, w is incident with such a P2-component, then we add E(T ) to D. Otherwise, we may hence assume that the vertex u is
not incident with such a P2-component of G[S0 ∪ S1]. If both v and w are incident with such a P2-component, then we add
E(T ) to D. Finally, if at most one of v and w is incident with such a component, we add the two edges uv and uw to D. This
completes the construction of D. We note that we always have {uv, uw} ⊆ D.

It is clear by the construction of D, that |D| ≤
2
3m. Wemust now show that either D is an ELTD-set of G or can bemodified

to produce a new ELTD-set of G of the same size as D.
By construction of D, the set D is an edge-total-dominating set. Suppose, for the sake of contradiction, that two edges e

and f in E(G) \ D are not located by D. Since any edge e of G′′ is located (within V (G′′)) by D′′ and hence by D, at least one of
e and f , say e, belongs to E(T ) ∪ S0 ∪ S1.

Assume that f belongs to G′′. Then, f is dominated by an edge g of D′′, and hence emust also be dominated by g . The edge
e therefore belongs to E(T ) ∪ S1 and e does not belong to a bad twin component of G′. We show that e ∈ E(T ). Suppose, to
the contrary, that e ∈ S1. Thus, the edge e is incident with a vertex of T , say t . By the way in which the set S1 is constructed,
the edge f is not incident with the vertex t . Recall that {uv, uw} ⊆ D. If t = u, then the two edges uv and uw locate e and
f , a contradiction. Therefore, renaming v and w, if necessary, we may assume that t = v. If f is not incident with u, then e
and f are located by uv, a contradiction. Hence, f is incident with u. But then the edge uw locates e and f , a contradiction.
Therefore, e ∈ E(T ).

Since e ∈ E(T ) \ D and {uv, uw} ⊆ D, the edge e = vw and is dominated by both uw and uv. Therefore, f must be
incident with u in order to also be dominated by both uv and uw. Further, g is incident with v or w. Renaming v and w, if
necessary, we may assume that g is incident with v. Let z be the common endpoint of f and g . Thus, f = uz and g = vz. Let
h be an edge that totally dominates the edge g in G′′. If h is incident with v, then h locates the edges e and f , a contradiction.
Therefore, the edge h is incident with z, and h must be the edge wz. Now, note that G[E(T ) ∪ S0 ∪ S1] consists only of the
triangle T , and G[E(T ) ∪ {f , g, h}] is isomorphic to K4. Thus, the set (D \ {uw}) ∪ {e} is an ELTD-set of G of the same size as
D. Hence, we may assume that f does not belong to G′′, for otherwise we are done. With this assumption, all edges of G′′ are
located by D and both e and f belong to E(T ) ∪ S0 ∪ S1.

By construction of D, all edges in a component of G[S0 ∪ S1] of order at least 3 are located. We note that this includes
the components that correspond to the bad twin components of G′. Moreover, by the way in which the set D is constructed,
each edge of T and each edge of a P2-component of G[S0 ∪ S1] is located by D. This completes the proof of Claim 8.B. �

By Claim 8.B, we may now assume that G has no triangle, for otherwise the desired result follows.

Claim 8.C. If G contains a 4-cycle, then γ ′

t,L(G) ≤
2
3m.

Proof of Claim. Let C: pqrsp be a 4-cycle of G. We construct two sets S0 and S1 of edges analogously to Claim 8.B. First of
all, S0 contains the edges of each component of G − E(C) that has at most four vertices. Second, each pair of edge-twins of
G′

= G[E(G) \ (E(C) ∪ S0)] must be a pair of closed edge-twins. Observe that any set F of mutually closed edge-twins in G′

consists of at most three edges incident with a common vertex not in C , with at least |F | − 1 of these edge-twins incident
with a (distinct) vertex of C . Further, by the triangle-freeness of G, at most two of these edge-twins can be incident with a
vertex of C . Once again, if removing |F | − 1 of these edge-twins that are incident with a vertex of C from G′ creates a new
pair of open edge-twins, we call the component of G′ containing the edges of F , a bad twin component of G′. For each set F of
mutually closed edge-twins of G′, if they belong to a bad twin component K of G′, then we add E(K) to the set S1. Otherwise,
we add |F | − 1 edges of F that are incident with a vertex of C to the set S1.

We now consider the graph G′′
= G[E(G) \ (E(C) ∪ S0 ∪ S1)], which is an edge-twin-free graph with no isolated edges.

Applying the inductive hypothesis to the graph G′′, there exists an ELTD-set, D′′, of G′′ of size at most 2
3 |E(G′′)|.

We build a setD from the setD′′ as follows. Initially, we letD = D′′. We first handle the components, K , ofG[S0] of order 4.
Since G is triangle-free, either K is isomorphic to C4 or to P4 or to K1,3. We consider each case in turn. For every component
K isomorphic to C4, the component K contains a pair of edges incident with the same vertex of the 4-cycle C . We include
in D two such edges. Let K be a component of G[S0] isomorphic to P4. Then, either (i) the two leaves in K are incident with
distinct vertices of the 4-cycle C , or (ii) exactly one vertex of K is incident with a vertex of C , or (iii) two vertices at distance 2
in K are incident with two opposite vertices of C . In Case (i), we add two consecutive edges of K to D. In Case (ii), we add
two consecutive edges of K to D, leaving out an edge not incident with any vertex of C . In Case (iii), we add to D the two
edges of K that are incident with the same vertex of C . Finally, let K be a component of G[S0] isomorphic to K1,3. Since G is
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edge-twin-free and triangle-free, exactly two vertices of K belong to C . Further, these two vertices of K that belong to C are
leaves in K and they are opposite vertices of C . We add the two edges of K incident with these vertices to D.

Next, we handle the edges of components corresponding to bad twin components of G′. Let K be such a component. We
note that K has either four or five edges. Let F be the set of kmutually closed edge-twins of G′ contained in K . Either |F | = 2
or |F | = 3. We now choose |F | − 1 of these edges that are incident with a vertex of C , and add them to D. Additionally, we
add to D the central edge of K (i.e., the edge of K that dominates all edges of K ).

Finally, we handle the edges of the 4-cycle C and the components ofG[S0∪S1] of order atmost 3. If K is such a component,
then there are three possibilities for K . The component K could be a P2-component with exactly one vertex incident with
some vertex of the 4-cycle C , or a P3-component with exactly one vertex incident with a vertex of C , or a P3-component with
its two leaves incident with two non-adjacent vertices of C , which we call opposite vertices of C (thus, p and r are opposite
vertices of C , as are q and s). Note that the edge set of K is a subset of either S0 or S1. For each P3-component we add to D one
edge of the P3-component that is incident with a vertex of C .

If C is incident with at least two P2-components or with four P3-components of G[S0 ∪ S1], then we add the four edges of
C to D. The edges of all components of G[S0 ∪ S1] are then located by D, and since the edges of G′′ are located within G′′ by
D′′, the set D is an ELTD-set of G of size at most 2

3m, and we are done.
If C is incident with two or three P3-components of G[S0 ∪ S1], then we add three edges of C to D. We make sure that if

there is an edge of C not incident with a vertex of a P3-component, then this edge belongs to D. Then, the edge of C not in D
is located thanks to the edge of D ∩ (S0 ∪ S1) it is adjacent to, and again D is an ELTD-set of G of size at most 2

3m.
If C is incident with at least two components of G[S0 ∪S1], none of which is a P2-component and at most one of which is a

P3-component, we add two consecutive edges of C to D. We ensure that if there is a P3-component in G[S0 ∪S1], it is incident
with one of the two selected edges of C , and that if there is an edge of C not incident with any component of G[S0 ∪ S1], that
edge is selected. Then, since each edge of C not in D is incident with an edge of D ∩ (S0 ∪ S1), all edges of C are located, and
again D is an ELTD-set of G of size at most 2

3m.
If C is incident with at least two components of G[S0 ∪ S1], exactly one of which is a P2-component and at most one of

which is a P3-component, then we may add three edges of C to D. We do it in such a way that the two edges of C incident
with the P2-component belong to D. Similarly, as before, D is an ELTD-set of G of size at most 2

3m. Indeed, the edges of S0 ∪ S1
are located, and the edge of C not in D is the only edge not in D adjacent with its two neighbor edges of C (both of which
belong to D), since G is triangle-free.

If C is incident with exactly one component K of G[S0 ∪ S1] and K corresponds to (i) a bad twin component of G′, or a
component of G[S0 ∪ S1] either (ii) of order at most 3 or (iii) isomorphic to C4, then we do as in the previous paragraph:
we add three edges of the 4-cycle C to D, making sure that if K is a P2-component, then the two edges of C incident with K
belong to D. Again, D is an ELTD-set of G of size at most 2

3m.
Suppose now that C is incident with exactly one component K of G[S0 ∪ S1], but K is isomorphic to P4 or K1,3. Then, C

contains at least one vertex incident with at least one edge of V (K) ∩ D. We add two edges of C to D, making sure that each
vertex of C is incident with an edge of D. Then again, D is an ELTD-set of G of size at most 2

3m; indeed the edges of K are
located by D, and the two edges of C not in D are also located thanks to the edge(s) of V (K) ∩ D.

Finally, we must handle the case where S0 = S1 = ∅. Then, if two vertices of C are incident with some edge of D′′, we
construct D from D′′ by adding to D two independent edges (that have no common end) of C each of which is adjacent with
an edge of D′′. If at most one vertex of C , say p, is incident with an edge of D′′, we build D from D′′ by adding the two edges
of C incident with p. Again this is an ELTD-set of G of size at most 2

3m and completes the proof of Claim 8.C. �

By Claims 8.A–8.C, we may assume that G has finite girth at least 5. Let C: u1 . . . uku1 be a shortest cycle of G. We build
the sets S0 and S1 as in Claims 8.B and 8.C. The set S0 contains the edges of all components of G − E(C) of order at most 4.
For each set F of mutually closed edge-twins of G′

= G[E(G) \ (E(C)∪ S0)] (note that now such set must have size exactly 2,
for otherwise we would obtain a cycle strictly shorter than C), if it belongs to a bad twin component of G′, the edges of this
component belong to S1; otherwise, the edge of F incident with a vertex of C belongs to S1.

Since G has girth at least 5, we note that any component of G[S0 ∪ S1] is isomorphic to P2, P3, P4 or the claw K1,3 with one
edge subdivided once (this last case corresponds to the bad twin components of G′). Again, G′′

= G[E(G)\ (E(C)∪S0 ∪S1)] is
edge-twin-free and has no isolated edge. Applying the inductive hypothesis to the graph G′′, there exists an ELTD-set, D′′, of
G′′ of size at most 2

3 |E(G′′)|. The girth requirement of G implies that the graph GC = G[E(C) ∪ S0 ∪ S1] is also edge-twin-free
and has no isolated edge. However, given an ELTD-set, DC , of GC of size at most 2

3 |E(GC )|, the set D′′
∪ DC might not be an

ELTD-set of G. Indeed, there might exist a vertex ui of C with two incident edges e ∈ E(GC ) and f ∈ E(G′′), such that both e
and f are only dominated by the edges of D′′

∪DC incident with ui. In this case, e and f are not located by D′′
∪DC . However,

note that if an edge uiui+1 of the cycle C is dominated by an edge of D′′
∪ DC incident with ui and one incident with ui+1,

then uiui+1 is located by D′′
∪ DC . Therefore, we will use this observation to build a suitable set DC .

Renaming vertices if necessary, we assume firstly that if any vertex of the cycle C is incident with an edge of D′′, then
in particular uk is incident with an edge of D′′. Now, for any P3-component K of G[S0 ∪ S1], the set DC contains the edge of
K that is incident with a vertex of C . Likewise, if K is a component of G[S0 ∪ S1] isomorphic to P4 or to K1,3 with one edge
subdivided once, DC contains the two edges of K that are not incident with a vertex of degree 1 in G. Finally, we include
in DC the set of

 2
3k


edges of C inducing

 k
3


vertex-disjoint copies of P3 and containing the edges u1u2, u2u3 but not

ukuk−1 if k ≢ 0 (mod 3) and not uk−1uk−2 if k ≡ 2 (mod 3). For example, if k ∈ {6, 7, 8}, we add to DC the four edges
{u1u2, u2u3, u4u5, u5u6}.
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(a) A family of trees. (b) The 6-cycle.

Fig. 2. Edge-twin-free graphs with edge-location-total-dominating number two-thirds the size. The thick edges are part of an optimal ELTD-set.

Now, if k ≡ 0 (mod 3), then since G has girth at least 5 and each vertex of C is incident with an edge of D′′
∪ DC , by our

previous observation this set is an ELTD-set of G. Since clearly, |DC | ≤
2
3 |E(GC )|, we are done.

Suppose k ≡ 1 (mod 3). If the vertex uk is incident with a vertex of a P2- or P3-component of G[S0 ∪ S1], then we add
the edge uk−1uk to DC . Again, we have |DC | ≤

2
3 |E(GC )|. Moreover, by our assumption on the vertex uk, if some vertex of C

is incident with an edge of D′′, then uk is such a vertex. In that case, all vertices of C are incident with some edge of D′′
∪ DC ,

which by the previous arguments, imply as before that the set D′′
∪ DC is an ELTD-set of G. Otherwise, if no vertex of C is

incident with an edge of D′′, then the two edges uku1 and uk−1uk might be dominated only by the edges of DC incident with
u1 and uk−1, respectively. However, then the edge uku1 is uniquely dominated by the edge u1u2 ∈ DC , and the edge uk−1uk
is uniquely dominated by the edge uk−2uk−1 ∈ DC , implying once again that D′′

∪ DC is an ELTD-set of G, and we are done.
Suppose, finally, that k ≡ 2 (mod 3). We now proceed as follows. If any of uk−1 and uk is incident with the edge of a

P3-component of G[S0 ∪ S1], we add the edge uk−1uk to DC . If any of uk−1 and uk is incident with the edge of a P2-component
of G[S0 ∪ S1], we add the edges uk−2uk−1 and uk−1uk to DC . In both cases, by the same arguments as previously, we are done.
Otherwise, we add the edge uk−2uk−1 to DC . Using our choice of uk, we can repeat the same arguments, as in the previous
case when k ≡ 1 (mod 3), to show that D′′

∪ DC is an ELTD-set of G. This completes the proof of Theorem 8. �

The following is a reformulation of Theorem 8 in the language of line graphs, showing that Conjecture 3 is true for this
class of graphs.

Corollary 9. If G is a twin-free line graph of order n without isolated vertices, then γ L
t (G) ≤

2
3n.

Theorem 8 (and hence Corollary 9) is tight. Indeed, each star where every edge is subdivided twice has edge-location-
total-dominating number two thirds its size. Additionally, observe that the 6-cycle has edge-location-total-dominating
number 4. See Fig. 2 for an illustration.
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