Location-domination and metric dimension in interval and permutation graphs

Florent Foucaud (Univ. Blaise Pascal, Clermont-Ferrand, France)

joint work with:

George B. Mertzios (Durham, UK), Reza Naserasr (Paris, France),
Aline Parreau (Lyon, France), Petru Valicov (Marseille, France)

April 2015
Location-domination
Fire detection in a building

Detecto r can detect re in its ro om and its neighb o rho o d (through a do o r). Each ro om must contain a detecto r o r have one in an adjacent ro om.
Detector can detect fire in its room and its neighborhood (through a door).
Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
Detector can detect fire in its room and its neighborhood (through a door).
Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
Detector can detect fire in its room and its neighborhood (through a door).
Each room must contain a detector or have one in an adjacent room.
Fire detection in a building

- Detector can detect fire in its room and its neighborhood (through a door).
- Each room must contain a detector or have one in an adjacent room.
Modelisation with a graph

Graph $G = (V, E)$. Vertices: rooms.
Edges: between any two rooms connected by a door
Modelisation with a graph

Graph $G = (V, E)$. Vertices: rooms.
Edges: between any two rooms connected by a door
Modelisation with a graph

- Graph $G = (V, E)$. Vertices: rooms.
 Edges: between any two rooms connected by a door
- Set of detectors = dominating set $D \subseteq V$: $\forall u \in V, N[u] \cap D \neq \emptyset$
Modelisation with a graph

Graph $G = (V, E)$. Vertices: rooms. Edges: between any two rooms connected by a door.

Set of detectors = dominating set $D \subseteq V$: $\forall u \in V, N[u] \cap D \neq \emptyset$

Domination number $\gamma(G)$: smallest size of a dominating set of G
Back to the building

Where is the fire?
Where is the fire?
Back to the building

Where is the fire?
Where is the fire?

To locate the fire, we need more detectors.
Locating the fire
In each room with no detector, set of dominating detectors is distinct.
Peter Slater, 1980’s. **Locating-dominating set** D:
subset of vertices of $G = (V, E)$ which is:

- dominating: $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating: $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D$.

Florent Foucaud

Identification problems in graphs

6 / 24
Peter Slater, 1980’s. **Locating-dominating set** D: subset of vertices of $G = (V, E)$ which is:

- dominating: $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating: $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D$.

$\gamma_L(G)$: location-domination number of G, minimum size of a locating-dominating set of G.
Locating the fire

Peter Slater, 1980’s. **Locating-dominating set** D: subset of vertices of $G = (V, E)$ which is:

- **dominating**: $\forall u \in V, N[u] \cap D \neq \emptyset$,
- **locating**: $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D$.

$\gamma_L(G)$: location-domination number of G, minimum size of a locating-dominating set of G.

Remark: $\gamma(G) \leq \gamma_L(G)$
Examples: paths

Domination number: $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Location-domination number: $\gamma_L(P_n) = \left\lceil \frac{2n}{5} \right\rceil$
Theorem (Slater, 1980’s)

If G is a graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.
Theorem (Slater, 1980’s)

G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Tight example ($k = 4$):
Theorem (Slater, 1980’s)

G graph of order n, $\gamma_L(G) = k$. Then $n \leq 2^k + k - 1$, i.e. $\gamma_L(G) = \Omega(\log n)$.

Theorem (Slater, 1980’s)

G tree of order n, $\gamma_L(G) = k$. Then $n \leq 3k - 1$, i.e. $\gamma_L(G) \geq \frac{n+1}{3}$.

Theorem (Rall & Slater, 1980’s)

G planar graph, order n, $\gamma_L(G) = k$. Then $n \leq 7k - 10$, i.e. $\gamma_L(G) \geq \frac{n+10}{7}$.

Tight examples:
Definition - Interval graph

Intersection graph of intervals of the real line.
Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Let G be an interval graph of order n, $\gamma_L(G) = k$.

Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Let G be an interval graph of order n, $\gamma_L(G) = k$.

Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Given an interval graph G of order n, $\gamma_L(G) = k$.

Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.
Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

A lower bound for interval graphs

Let G be an interval graph of order n, $\gamma_L(G) = k$.

Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

- Locating-dominating set D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$n \leq \sum_{i=1}^{k} (k-i) + k = \frac{k(k+3)}{2}.$$
Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

If G is an interval graph of order n, $\gamma_L(G) = k$.

Then $n \leq \frac{k(k+3)}{2}$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Tight:
Definition - Permutation graph

Given two parallel lines A and B: intersection graph of segments joining A and B.

![Diagram of permutation graph](image)
Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Let G be a permutation graph of order n, $\gamma_L(G) = k$.

Then $n \leq k^2 + k - 2$, i.e. $\gamma_L(G) = \Omega(\sqrt{n})$.

Florent Foucaud

Identification problems in graphs

12 / 24
Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

A permutation graph of order \(n \), \(\gamma_L(G) = k \).

Then \(n \leq k^2 + k - 2 \), i.e. \(\gamma_L(G) = \Omega(\sqrt{n}) \).

- Locating-sominating set \(D \) of size \(k \): \(k + 1 \) "top zones" and \(k + 1 \) "bottom zones"
- Only one segment in \(V \setminus D \) for one pair of zones
 \[\rightarrow n \leq (k+1)^2 + k \]
- Careful counting for the precise bound
Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

Let \(G \) be a permutation graph of order \(n \), with \(\gamma_L(G) = k \). Then \(n \leq k^2 + k - 2 \), i.e. \(\gamma_L(G) = \Omega(\sqrt{n}) \).

Tight:
Metric dimension
Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them
Determination of Position in 3D Euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:

need to know the exact position of 4 satellites + distance to them

Question

Does the “GPS” approach also work in undirected unweighted graphs?
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\text{dist}(w, u) \neq \text{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

$R \subseteq V(G)$ resolving set of G:

$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.
Now, \(w \in V(G) \) distinguishes \(\{u, v\} \) if \(\text{dist}(w, u) \neq \text{dist}(w, v) \)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

\[R \subseteq V(G) \text{ resolving set of } G: \]

\[\forall u \neq v \text{ in } V(G), \text{ there exists } w \in R \text{ that distinguishes } \{u, v\}. \]
Metric dimension

Now, \(w \in V(G) \) distinguishes \(\{u, v\} \) if \(\text{dist}(w, u) \neq \text{dist}(w, v) \)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

\[R \subseteq V(G) \] resolving set of \(G \):

\[\forall u \neq v \text{ in } V(G), \text{ there exists } w \in R \text{ that distinguishes } \{u, v\}. \]
Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\text{dist}(w, u) \neq \text{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

$R \subseteq V(G)$ resolving set of G:

$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

![Graph with nodes and edges to illustrate resolving set](image)
Now, $w \in V(G)$ distinguishes \{u, v\} if $\text{dist}(w, u) \neq \text{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

$R \subseteq V(G)$ resolving set of G:

$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes \{u, v\}.
Now, \(w \in V(G) \) distinguishes \(\{u, v\} \) if \(\text{dist}(w, u) \neq \text{dist}(w, v) \)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

\(R \subseteq V(G) \) resolving set of \(G \):

\[\forall u \neq v \text{ in } V(G), \text{ there exists } w \in R \text{ that distinguishes } \{u, v\}. \]
Now, \(w \in V(G) \) distinguishes \(\{u, v\} \) if \(\text{dist}(w, u) \neq \text{dist}(w, v) \)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

\(R \subseteq V(G) \) resolving set of \(G \):

\[
\forall u \neq v \text{ in } V(G), \text{ there exists } w \in R \text{ that distinguishes } \{u, v\}.
\]
Now, \(w \in V(G) \) distinguishes \(\{u, v\} \) if \(\text{dist}(w, u) \neq \text{dist}(w, v) \).

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

\[R \subseteq V(G) \] resolving set of \(G \):

\[\forall u \neq v \text{ in } V(G), \text{ there exists } w \in R \text{ that distinguishes } \{u, v\}. \]

MD(\(G \)): metric dimension of \(G \), minimum size of a resolving set of \(G \).
Any locating-dominating set is a resolving set, hence $MD(G) \leq \gamma_L(G)$.

A locating-dominating set can be seen as a “distance-1-resolving set”.
Remarks

• Any locating-dominating set is a resolving set, hence $MD(G) \leq \gamma_L(G)$.

• A locating-dominating set can be seen as a “distance-1-resolving set”.

Proposition

$MD(G) = 1 \iff G$ is a path
Example of path: no bound $n \leq f(MD(G))$ possible.
Example of path: no bound $n \leq f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, $MD(G) = k$. Then $n \leq D^k + k$.

(diameter: maximum distance between two vertices)
Example of path: no bound \(n \leq f(MD(G)) \) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

\[G \text{ of order } n, \text{ diameter } D, MD(G) = k. \text{ Then } n \leq D^k + k. \]

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

\[G \text{ interval graph or permutation graph of order } n, MD(G) = k, \text{ diameter } D. \text{ Then } n = O(Dk^2) \text{ i.e. } k = \Omega\left(\sqrt{\frac{n}{D}}\right). \]

→ Proofs are similar as for locating-dominating sets.
→ Bounds are tight (up to constant factors).
Algorithmic complexity
LOCATING-DOMINATING SET

INPUT: Graph G, integer k.

QUESTION: Is there a locating-dominating set of G of size k?
LOCATING-DOMINATING SET

INPUT: Graph G, integer k.

QUESTION: Is there a locating-dominating set of G of size k?

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING.

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)
Interval and permutation graphs

METRIC DIMENSION

INPUT: Graph G, integer k.

QUESTION: Is there a resolving set of G of size k?

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

$$\text{MD}(G') = \gamma_{L}(G) + 2$$

Corollary (F., Mertzios, Naserasr, Parreau, Valicov)

Florent Foucaud

Identification problems in graphs
Interval and permutation graphs

Metric Dimension

INPUT: Graph G, integer k.

QUESTION: Is there a resolving set of G of size k?

Reduction from **LOCATING-DOMINATING SET** to **METRIC DIMENSION**:

$$MD(G') = \gamma_L(G) + 2$$

Corollary (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation (and have diameter 2).
Note: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs
\[\rightarrow\] probably no \(f(k)\text{poly}(n) \)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov)

METRIC DIMENSION can be solved in time \(2^{O(k^4)}n \) on interval graphs.

Ideas:
- use dynamic programming on a path-decomposition of \(G^4 \).
- each bag has size \(O(k^2) \).
- it suffices to separate vertices at distance 2
- “transmission” lemma for separation constraints
Open problems

- Investigate bounds for other “geometric” graphs, for MD and γ_L

- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs

- Complexity of METRIC DIMENSION for bounded treewidth

- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...
Open problems

- Investigate bounds for other “geometric” graphs, for MD and γ_L
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION
Complexity of LOCATING-DOMINATING SET

- NP-complete
- polynomial
- trees, cographs
- bounded treewidth, bounded cliquewidth
- perfect, chordal, co-comparability, split, interval
- permutation, co-bipartite, line of bipartite
- claw-free, quasi-line, line, unit interval
- planar bipartite

Florent Foucaud
Identification problems in graphs
Complexity of METRIC DIMENSION

- **NP-complete**
 - planar
 - series-parallel
 - outerplanar

- **polynomial**
 - trees
 - bounded cyclomatic number
 - bounded vertex cover
 - bounded distance to linear forest
 - bounded distance to forest (FVS)
 - bounded pathwidth
 - bounded treewidth
 - bounded cliquewidth

- **OPEN**
 - perfect
 - chordal
 - co-comparability
 - split
 - co-bipartite
 - line of bipartite
 - line
 - quasi-line

- **unit interval**
 - co-bipartite
 - permutation
 - interval

- **claw-free**
 - co-compatability
 - compatability
 - chordal
 - claw-free
 - perfect
 - permutation

- **NP-complete**
 - identification problems in graphs