Edge identifying codes
(identified codes in line graphs)

Florent Foucaud1

joint work with S. Gravier2, R. Naserasr1, A. Parreau2, P. Valicov1

1:LaBRI, Bordeaux
2:Institut Fourier, Grenoble

UPC, Barcelona - 12th May 2011
Locating a burglar in a math department
Locating a burglar in a math department

How many detectors do we need?
Locating a burglar in a math department

How many detectors do we need?
Locating a burglar in a math department

How many detectors do we need?
Locating a burglar in a math department

How many detectors do we need?

Florent Foucaud

Edge identifying codes
Locating a burglar in a math department

Florent Foucaud

Edge identifying codes
How many detectors do we need?
Identifying codes: definition

Let \(N[u] \) be the set of vertices \(v \) s.t. \(d(u, v) \leq 1 \)

Definition - Identifying code of \(G \) (Karpovsky, Chakrabarty, Levitin, 1998)

Subset \(C \) of \(V \) such that:
- \(C \) is a dominating set in \(G \): \(\forall u \in V, N[u] \cap C \neq \emptyset \), and
- \(C \) is a separating code in \(G \): \(\forall u \neq v \) of \(V \), \(N[u] \cap C \neq N[v] \cap C \)
Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in G: $\forall u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Notation - Identifying code number

$\gamma^{ID}(G)$: minimum cardinality of an identifying code of G
Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that $N[u] = N[v]$.

A graph is identifiable iff it is twin-free (i.e. it has no twins).
Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that $N[u] = N[v]$.

A graph is identifiable iff it is twin-free (i.e. it has no twins).
Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that $N[u] = N[v]$.

A graph is **identifiable** iff it is **twin-free** (i.e. it has no twins).
Let G be an identifiable graph, then

$$\lceil \log_2(n + 1) \rceil \leq \gamma^{\text{ID}}(G)$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph, then

$$\lceil \log_2(n + 1) \rceil \leq \gamma^{ID}(G)$$

Theorem (Gravier, Moncel, 2007)

Let G be an identifiable graph with at least one edge, then

$$\gamma^{ID}(G) \leq n - 1$$
Bounds

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph, then

$$\lceil \log_2(n + 1) \rceil \leq \gamma_{ID}(G)$$

Theorem (Gravier, Moncel, 2007)

Let G be an identifiable graph with at least one edge, then

$$\gamma_{ID}(G) \leq n - 1$$

Both bounds are tight, and all extremal examples are known:

- lower bound: Moncel, 2006
Let $I[e]$ be the set of edges f s.t. $e = f$ or e, f are incident to a common vertex

Definition - Edge identifying code of G (without isolated vertices)

Subset C_E of E such that:
- C_E is an edge dominating set in G: $\forall e \in E$, $I[e] \cap C_E \neq \emptyset$, and
- C_E is an edge separating code in G: $\forall e \neq f$ of E, $I[e] \cap C_E \neq I[f] \cap C_E$
Let $I[e]$ be the set of edges f s.t. $e = f$ or e, f are incident to a common vertex

Definition - Edge identifying code of G (without isolated vertices)

Subset C_E of E such that:
- C_E is an edge dominating set in G: $\forall e \in E$, $I[e] \cap C_E \neq \emptyset$, and
- C_E is an edge separating code in G: $\forall e \neq f$ of E, $I[e] \cap C_E \neq I[f] \cap C_E$

Remark

Edge identifying code of $G \longleftrightarrow$ Identifying code of $\mathcal{L}(G)$
Let $I[e]$ be the set of edges f s.t. $e = f$ or e, f are incident to a common vertex.

Definition - Edge identifying code of G (without isolated vertices)

Subset C_E of E such that:
- C_E is an edge dominating set in G: $\forall e \in E$, $I[e] \cap C_E \neq \emptyset$, and
- C_E is an edge separating code in G: $\forall e \neq f$ of E, $I[e] \cap C_E \neq I[f] \cap C_E$

Remark

Edge identifying code of $G \iff$ Identifying code of $\mathcal{L}(G)$

Notation - Edge identifying code number

$\gamma^{ID}(\mathcal{L}(G)) = \gamma^{EID}(G)$: minimum cardinality of an edge identifying code of G
Not all graphs have an edge identifying code!

Pendant = pair of twin edges.

A graph is **edge identifiable** iff it is **pendant-free** (and simple).
Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \leq \left(\frac{|C_E|+2}{2}\right)^2 - 4$
Lower bounds

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \leq \left(\frac{|C_E| + 2}{2} \right) - 4$

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code of size k, then $|E(G)| \leq \begin{cases} \frac{4}{3}k, & \text{if } k \equiv 0 \mod 3 \\ \frac{4}{3}(k-1)+1, & \text{if } k \equiv 1 \mod 3 \\ \frac{4}{3}(k-2)+2, & \text{if } k \equiv 2 \mod 3 \end{cases}$
Lower bounds

Theorem (F., Gravier, Naseresr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \leq \binom{|C_E|+2}{2} - 4$

Theorem (F., Gravier, Naseresr, Parreau, Valicov)

Let G be an edge identifiable graph with an edge identifying code of size k, then $|E(G)| \leq \begin{cases} \left(\frac{4}{3}k\right), & \text{if } k \equiv 0 \mod 3 \\ \left(\frac{4}{3}(k-1)+1\right) + 1, & \text{if } k \equiv 1 \mod 3 \\ \left(\frac{4}{3}(k-2)+2\right) + 2, & \text{if } k \equiv 2 \mod 3 \end{cases}$

Corollary

$\gamma^{ID}(\mathcal{L}(G)) > \frac{3\sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}$. This bound is tight.
Let G be an edge identifiable graph with an edge identifying code C_E inducing a connected subgraph, then $|E(G)| \leq \left(\frac{|C_E|+2}{2}\right) - 4$

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let $G' = G[C_E]$. Each edge $uv \in G$ is determined by two sets:
- set of edges of G' incident to u
- set of edges of G' incident to v

At most $|V(G')| + \left(\frac{|V(G')|}{2}\right) = \left(\frac{|V(G')|+1}{2}\right)$ such sets.

- G' not a tree $\Rightarrow |V(G')| \leq |C_E|$
- G' tree: we show that at least 4 of these sets cannot be used.
Corollary

\[\gamma^{\text{ID}}(\mathcal{L}(G)) > \frac{3\sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}. \] This bound is tight.
Corollary

\[\gamma^{ID}(\mathcal{L}(G)) > \frac{3\sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|}. \] This bound is tight.

Theorem *(Beineke, 1970)*

\(G \) is a line graph if and only if it does not contain one of the following graphs as an induced subgraph.

[Diagram of graphs showing examples of line graphs and forbidden subgraphs]
Corollary

\[\gamma^{ID}(\mathcal{L}(G)) > \frac{3\sqrt{2}}{4} \sqrt{|V(\mathcal{L}(G))|} \]. This bound is tight.

Theorem (Beineke, 1970)

G is a line graph if and only if it does not contain one of the following graphs as an induced subgraph.

The bound does **not** hold for claw-free graphs.

Question

Does the bound hold for a class defined by a smaller subfamily of the list?
An upper bound

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge-identifiable graph with a minimal edge identifying code C_E. Then $G[C_E]$ is 2-degenerated.
An upper bound

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge-identifiable graph with a minimal edge identifying code C_E. Then $G[C_E]$ is 2-degenerated.

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^-, then $\gamma^{EID}(G) \leq 2|V(G)| - 4$.

Florent Foucaud

Edge identifying codes

11 / 18
An upper bound

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

Let G be an edge-identifiable graph with a minimal edge identifying code C_E. Then $G[C_E]$ is 2-degenerated.

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^-, then $\gamma^{EID}(G) \leq 2|V(G)| - 4$.

This is almost tight since $\gamma^{EID}(K_{2,n}) = 2n - 2 = 2|V(K_{2,n})| - 6$.

Florent Foucaud

Edge identifying codes
An upper bound - corollary

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^-, then $\gamma_{EID}(G) \leq 2|V(G)| - 4$.

Corollary

If G is an edge-identifiable graph with average degree $\overline{d}(G) \geq 5$, then $\gamma_{ID}(\mathcal{L}(G)) \leq n - n \frac{n}{\Delta(\mathcal{L}(G))}$ where $n = |V(\mathcal{L}(G))|$.

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Florent Foucaud

Edge identifying codes
An upper bound - corollary

Corollary

If G is an edge-identifiable graph on n vertices not isomorphic to K_4^-, then $\gamma^{\text{EID}}(G) \leq 2|V(G)| - 4$.

Corollary

If G is an edge-identifiable graph with average degree $\bar{d}(G) \geq 5$, then $\gamma^{\text{ID}}(L(G)) \leq n - \frac{n}{\Delta(L(G))}$ where $n = |V(L(G))|$.

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected identifiable graph on n vertices and of maximum degree Δ. Then $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Delta} + O(1)$.
Problem **EDGE IDCODE**

INSTANCE: A graph G and an integer k.

QUESTION: Does G have an edge identifying code of size at most k?

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

EDGE IDCODE is NP-complete, even for planar subcubic bipartite graphs of arbitrarily large girth.
Problem EDGE IDCODE

INSTANCE: A graph G and an integer k.
QUESTION: Does G have an edge identifying code of size at most k?

Theorem (F., Gravier, Naserasr, Parreau, Valicov)

EDGE IDCODE is NP-complete, even for planar subcubic bipartite graphs of arbitrarily large girth.
Proof by reduction from:

Problem PLANAR \((\leq 3, 3)\)-SAT

INSTANCE: A set \(Q\) of clauses over a set \(X\) of boolean variables such that:

- Each clause contains at least two and at most three distinct literals
- Each variable appears exactly once negated, twice non-negated
- The bipartite incidence graph \(B(Q)\) is planar

QUESTION: Can \(Q\) be satisfied, i.e. is there a truth assignment of the variables of \(X\) such that each clause contains at least one true literal?

Theorem (Dahlhaus, Johnson, Papadimitriou, Seymour, Yannakakis, 1994)

PLANAR \((\leq 3, 3)\)-SAT is NP-complete.
Reduction

Florent Foucaud

Edge identifying codes

15 / 18
Q is satisfiable if and only if G contains an edge identifying code C_E of size $k = 25|Q| + 22|X|$.
A line graph $\mathcal{L}(G)$ is perfect if and only if G has no odd cycles of length more than 3.
Complexity

Theorem (Trotter, 1977)
A line graph $\mathcal{L}(G)$ is perfect if and only if G has no odd cycles of length more than 3.

Corollary
IDCODE is NP-complete even when restricted to perfect 3-colorable planar line graphs of maximum degree 4.
Complexity

Theorem (Courcelle, 1990)

Every graph property expressable in monadic second-order logic is solvable in linear time in classes of graphs having bounded tree-width.

Corollary

EDGE IDCODE is linear time solvable in trees, k-outerplanar graphs, series-parallel graphs, ...

Graph

- set V of vertices, set E of edges, unary predicates $a, b : E \rightarrow V$
- $e \neq f := (a(e) \neq a(f) \land a(e) \neq b(f)) \lor (b(e) \neq a(f) \land b(e) \neq b(f))$
- $e \mathcal{I}^* f := a(e) = a(f) \lor a(e) = b(f) \lor b(e) = b(f) \lor b(e) = a(f)$

$$\exists C, C \subseteq E, |C| \leq k, \left(\forall e \in E, \exists f \in C \land e \mathcal{I}^* f \right) \land$$

$$\left(\forall e \in E, \forall f \in E, e \neq f, \exists g \in C, ((e \mathcal{I}^* g \land \neg (f \mathcal{I}^* g)) \lor (f \mathcal{I}^* g \land \neg (e \mathcal{I}^* g))) \right)$$
Gràcies!