Bounding the identifying code number of a graph using its degree parameters
(a probabilistic approach)

Florent Foucaud (LaBRI)

GT probas, LaBRI - September 16th, 2011

joint work with Guillem Perarnau (UPC, Barcelona)
Let \(N[u] \) be the set of vertices \(v \) s.t. \(d(u, v) \leq 1 \)

Definition - Identifying code of \(G \) (Karpovsky, Chakrabarty, Levitin, 1998)

Subset \(C \) of \(V \) such that:

- \(C \) is a dominating set in \(G \): \(\forall u \in V, N[u] \cap C \neq \emptyset \), and
- \(C \) is a separating code in \(G \): \(\forall u \neq v \) of \(V \), \(N[u] \cap C \neq N[v] \cap C \)

Equivalently: \((N[u] \Delta N[v]) \cap C \neq \emptyset \) (covering symmetric differences)

Notation - Identifying code number

\(\gamma_{ID}(G) \): minimum cardinality of an identifying code of \(G \)
Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that $N[u] = N[v]$.

A graph is identifiable iff it is twin-free (i.e. it has no twins).
Degree parameters of a graph

Graph $G = (V, E)$, vertex $v \in V$.

- **degree** of v: number of edges it is incident to
- **minimum degree** δ of G: min. degree of a vertex in G
- **maximum degree** d of G: max. degree of a vertex in G
- **d-regular graph**: all vertices have degree d
Previous results

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n + 1) \rceil \leq \gamma^{ID}(G) \leq n - 1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph with maximum degree d, then

$$\frac{2n}{d+2} \leq \gamma^{ID}(G)$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

There exists a constant c, such that for every connected nontrivial identifiable graph G of max. degree d,

$$\gamma^{ID}(G) \leq n - \frac{n}{d} + c$$

This would be tight. True for $d = 2$ and $d = n - 1$.
The probabilistic method

Technique initiated, among others, by Pál Erdős
used mainly in combinatorics (Ramsey theory, graph theory, ...)

1. Define a suitable probability space
2. Select some object from this space using randomness
3. Prove that with nonzero probability, certain "good" conditions hold
4. Conclusion: there always exists a "good" object

Classic reference: Noga Alon and Joel Spencer, *The probabilistic method*
Corollaries

\(NF(G) \): proportion of non forced vertices of \(G \)

\[
NF(G) = \frac{\# \text{non-forced vertices in } G}{\# \text{vertices in } G}
\]

Theorem (F., Perarnau, 2011+)

There exists an integer \(d_0 \) such that for each identifiable graph \(G \) on \(n \) vertices having maximum degree \(d \geq d_0 \) and no isolated vertices,

\[
\gamma^{ID}(G) \leq n - \frac{n \cdot NF(G)^2}{85d}
\]

Corollary

- In general, \(NF(G) \geq \frac{1}{d+1} \) and \(\gamma^{ID}(G) \leq n - \frac{n}{\Theta(d^3)} \)
- If \(G \) is \(d \)-regular, \(NF(G) = 1 \) and \(\gamma^{ID}(G) \leq n - \frac{n}{85d} \).
- If \(G \) has clique number bounded by \(k \), \(NF(G) \geq \frac{1}{c(k)} \) and \(\gamma^{ID}(G) \leq n - \frac{n}{\Theta(d)} \).
Where are most of the d-regular graphs?

Let G be a d-regular graph.

\[\frac{2}{d} n \leq \frac{d-1}{d} n \]

\[\gamma^{ID}(G) \geq \frac{2n}{d+2} \quad \text{Karpovsky et al. (1998)} \]

\[\gamma^{ID}(G) \leq n - \frac{n}{d} + c \quad \text{Conjecture (2009)} \]
Where are most of the d-regular graphs?

Let G be a d-regular graph.

\[\gamma_{ID}(G) \geq \frac{2n}{d+2} \quad \text{Karpovsky et al (1998)} \]

\[\gamma_{ID}(G) \leq n - \frac{n}{\Theta(d)} \quad \text{F., Perarnau (2011+)} \]
Where are most of the d-regular graphs?

Let G be a d-regular graph.
Where are most of the d-regular graphs?

Let G be a d-regular graph.
Where are most of the d-regular graphs?

Let G be a d-regular graph.
Where are most of the d-regular graphs?

Let G be a d-regular graph.
Where are most of the d-regular graphs?

Let G be a d-regular graph.

Let G be a random d-regular graph. Then a.a.s.

\[
\frac{2}{d} n \leq \gamma^{\text{ID}}(G) \leq \left(1 + o_d(1)\right) \frac{2 \log d}{d} n
\]

\[\frac{2 \log d}{d} n \leq (1 + o_d(1)) \frac{d-1}{d} n\]

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

\[
(1 + o_d(1)) \frac{\log d}{d} n \leq \gamma^{\text{ID}}(G) \leq (1 + o_d(1)) \frac{2 \log d}{d} n
\]
Where are most of the d-regular graphs?

Let G be a d-regular graph.

Let G be a random d-regular graph. Then a.a.s.

$$
\frac{2}{d} n \leq \gamma_{ID}(G) \leq \frac{2 \log d}{d} n \\
\frac{d-1}{d} n \leq \gamma_{ID}(G) \leq \log d + \log \log d + O_d(1) n
$$

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$
(1 + o_d(1)) \frac{\log d}{d} n \leq \gamma_{ID}(G) \leq (1 + o_d(1)) \frac{2 \log d}{d} n \\
\frac{\log d - 2 \log \log d}{d} n \leq \gamma_{ID}(G) \leq \frac{\log d + \log \log d + O_d(1)}{d} n
$$
Probability space $G^*_{n,d}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
Probability space $\mathcal{G}_{n,d}^*$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
Probability space $\mathcal{G}_{n,d}^*$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets
Probability space $\mathcal{G}_{n,d}^*$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem: possible loops or multiple edges!
Probability space $\mathcal{G}_{n,d}^*$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem: possible loops or multiple edges!
Start over...
Probability space $G_{n,d}^*$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem: possible loops or multiple edges!
Start over...
The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n,d}^*$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

Problem: possible loops or multiple edges!
Start over...

Probability space $G^*_{n,d}$ of d-regular (labelled) multigraphs on n vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let $G \in G^*_{n,d}$. Then $Pr(G \text{ is simple}) \rightarrow e^{\frac{1-d^2}{4}} > 0$
The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n,d}^*$ of d-regular (labelled) multigraphs on n vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let $G \in \mathcal{G}_{n,d}^*$. Then $\Pr(G \text{ is simple}) \rightarrow e^{\frac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^* \mid$ the graph is simple.

$\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution
The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n,d}^*$ of d-regular (labelled) multigraphs on n vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let $G \in \mathcal{G}_{n,d}^*$. Then $\Pr(G$ is simple $) \rightarrow e^{\frac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^*$ | the graph is simple.

$\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution

Theorem: any property which holds a.a.s. for $\mathcal{G}_{n,d}^*$, also does for $\mathcal{G}_{n,d}$.
Remark

Other models are known, but do not provide a uniform distribution.
Other models are known, but do not provide a uniform distribution

\[L_d(n) \text{: \# labelled } d\text{-regular graphs on } n \text{ vertices, } U_d(n) \text{: \# UNlabelled } d\text{-regular graphs.} \]

Bollobás, 1982: \[U_d(n) \sim \frac{L_d(n)}{n} \sim \frac{(rn)!e^{(1-d^2)/4}}{(\frac{m}{2})!2^m/2(r!n!)} \]
(Note: no exact formula is known!)

Corollary: any property which holds a.a.s. for labelled \(d \)-regular graphs also does for unlabelled ones.
The pairing model (a.k.a. configuration model) - Bollobás, 1980

Proposition (Bollobás, 1980 - Wormald, 1981)

\[\mathbb{E}(\text{number of } k\text{-cycles in } G^*_{n,d}) \longrightarrow \frac{(d-1)^k}{2k} \]

In fact, stronger result: the distribution of the numbers of \(k \)-cycles for fixed \(k \in \{2, \ldots\} \) all jointly tend to independent Poisson variables of parameter \(\lambda_k = \frac{(d-1)^k}{2k} \).
The pairing model (a.k.a. configuration model) - Bollobás, 1980

Proposition (Bollobás, 1980 - Wormald, 1981)

\[E(\text{number of } k\text{-cycles in } G_{n,d}^*) \rightarrow \frac{(d-1)^k}{2k} \]

In fact, stronger result: the distribution of the numbers of \(k \)-cycles for fixed \(k \in \{2, \ldots \} \) all jointly tend to independent Poisson variables of parameter \(\lambda_k = \frac{(d-1)^k}{2k} \).

Proposition

Let \(G \in G_{n,d}^* \), then a.a.s. \(G \) is identifiable (no twins).
Graphs with girth at least 5

Proposition (F., Perarnau, 2011+)

Let G be a twin-free graph on n vertices having girth at least 5. Let D be a 2-dominating set of G. If the subgraph induced by D, $G[D]$, has no isolated edge, D is an identifying code of G.

Theorem (F., Perarnau, 2011+)

Florent Foucaud (LaBRI)
Let G be a twin-free graph on n vertices having girth at least 5. Let D be a 2-dominating set of G. If the subgraph induced by D, $G[D]$, has no isolated edge, D is an identifying code of G.

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then

$$\gamma_{ID}^D(G) \leq \frac{\log d + \log \log d + O_d(1)}{d} n$$
Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.
Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.

$$X_v = \begin{cases}
0 & \text{if } |N[v] \cap S| \geq 2 \\
1 & \text{otherwise}
\end{cases}$$

$$Pr(X_v = 1) = (1 - p)^{d+1} + (d + 1)p(1 - p)^d \leq (1 + dp)e^{-dp}$$
Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.

$$X_v = \begin{cases}
0 & \text{if } |N[v] \cap S| \geq 2 \\
1 & \text{otherwise}
\end{cases}$$

$$Pr(X_v = 1) = (1 - p)^{d+1} + (d + 1)p(1 - p)^d \leq (1 + dp)e^{-dp}$$

- $X(S) = \sum X_v$ (\# non 2-dominated).
Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.

$$X_v = \begin{cases} 0 & \text{if } |N[v] \cap S| \geq 2 \\ 1 & \text{otherwise} \end{cases}$$

$$Pr(X_v = 1) = (1 - p)^{d+1} + (d + 1)p(1 - p)^d \leq (1 + dp)e^{-dp}$$

- $X(S) = \sum X_v$ (# non 2-dominated).

- $C = S \cup \{v : X_v = 1\}$, $p = \frac{\log d + \log \log d}{d}$

$$\mathbb{E}(|D|) = \mathbb{E}(|S|) + X(S) \leq \frac{\log d + \log \log d}{d}n + \frac{1 + \log d + \log \log d}{d \log d}n$$

$$\mathbb{E}(|D|) \leq \frac{\log d + \log \log d + O_d(1)}{d}n$$
Sketch of the proof: identifying code

\[
Y_{uv} = \begin{cases} 1 & \text{if} \ 0 \\ \text{otherwise} \end{cases}
\]

\[
\Pr(Y_{uv} = 1) \leq p^2 (1 - p)^2 d - 2 + (1 - p)^2 d + p (1 - p)^2 d - 1
\]

\[
\mathcal{C} = \mathcal{S} \cup \{v : X_v = 1\} \cup \{w : w \in N(u), Y_{uv} = 1\}
\]

\[
\mathbb{E}(|\mathcal{C}|) \leq \log d + \log \log d + O(d)
\]

Florent Foucaud (LaBRI)
Bounding the identifying code number of a graph using its degree parameters
Sketch of the proof: identifying code

\[Y_{uv} = \begin{cases} 1 & \text{if} \ 0 \\ 0 & \text{otherwise} \end{cases} \]

\[\Pr(Y_{uv} = 1) \leq p^2 (1 - p)^2 d^{-2} + (1 - p)^2 d + p (1 - p)^2 d^{-1} \]

\[C = S \cup \{ v : X_v = 1 \} \cup \{ w : w \in N(u), Y_{uv} = 1 \} \]

\[E(|C|) \leq \log d + \log \log d \]

Florent Foucaud (LaBRI)
Sketch of the proof: identifying code

\[Y_{uv} = \begin{cases}
1 & \text{if } uv \\
0 & \text{otherwise}
\end{cases} \]

\[
Pr(Y_{uv} = 1) \leq p^2(1-p)^{2d-2} + (1-p)^{2d} + p(1-p)^{2d-1}
\]
Sketch of the proof: identifying code

\[Y_{uv} = \begin{cases} 1 & \text{if} \, w \quad \text{SOLVED!} \\ 0 & \text{otherwise} \end{cases} \]

\[
Pr(Y_{uv} = 1) \leq p^2(1 - p)^{2d-2} + (1 - p)^{2d} + p(1 - p)^{2d-1}
\]

\[
\mathcal{C} = S \cup \{ v : X_v = 1 \} \cup \{ w : w \in N(u), \, Y_{uv} = 1 \}, \quad p = \frac{\log d + \log \log d}{d}
\]

\[
\mathbb{E}(|\mathcal{C}|) \leq \frac{\log d + \log \log d + O_d(1)}{d} n
\]
Let G be a random d-regular graph. Then a.a.s.

$$\gamma^{ID}(G) \leq \frac{\log d + \log \log d + O_d(1)}{d} n$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$
Let G be a random d-regular graph. Then a.a.s.
\[
\gamma^{\text{ID}}(G) \leq \frac{\log d + \log \log d + O(d)}{d} n
\]

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n,d)$
\[
\Pr(G \text{ identifiable}) \xrightarrow{n \to \infty} 1
\]
Back to random regular graphs - upper bound

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$\gamma^{ID}(G) \leq \frac{\log d + \log \log d + O_d(1)}{d} n$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$\Pr(G \text{ identifiable}) \xrightarrow{n} 1$$

$$\mathbb{E}(C_3's) = e \frac{(d-1)^3}{6} \quad \mathbb{E}(C_4's) = e \frac{(d-1)^4}{8}$$
Let G be a random d-regular graph. Then a.a.s.

$$\gamma^{\text{ID}}(G) \leq \frac{\log d + \log \log d + O_d(1)}{d} n$$

Theorem (F., Perarnau, 2011+)

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n,d)$

$$\Pr(G \text{ identifiable}) \xrightarrow{n \to \infty} 1$$

$$\mathbb{E}(C_3 \text{'s}) = e \frac{(d-1)^3}{6} \quad \mathbb{E}(C_4 \text{'s}) = e \frac{(d-1)^4}{8}$$

$$\Pr(\#C_3 > \log \log n) \longrightarrow 0$$

$$\Pr(\#C_4 > \log \log n) \longrightarrow 0$$
Back to random regular graphs - upper bound

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$\gamma^{\text{ID}}(G) \leq \frac{\log d + \log \log d + O_d(1)}{d} n$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$\Pr(G \text{ identifiable}) \xrightarrow{n \to} 1$$

$$\mathbb{E}(C_3 \text{'s}) = e \frac{(d-1)^3}{6} \quad \mathbb{E}(C_4 \text{'s}) = e \frac{(d-1)^4}{8}$$

$$\Pr(\#C_3 > \log \log n) \longrightarrow 0$$

$$\Pr(\#C_4 > \log \log n) \longrightarrow 0$$