Bounds on the size of identifying codes for graphs of maximum degree Δ

Florent Foucaud
joint work with Ralf Klasing, Adrian Kosowski, André Raspaud

Université Bordeaux 1

September 2009
simple, undirected graph : models a building
simple detectors: able to detect a fire in a neighbouring room

goal: locate an eventual fire
Locating a fire in a building

simple detectors: able to detect a fire in a neighbouring room

goal: locate an eventual fire

fire in room \(f \)
Locating a fire in a building

simple detectors: able to detect a fire in a neighbouring room

goal: locate an eventual fire

fire in room f

the *identifying sets* of all vertices must be distinct
Identifying codes: definition

Definition: identifying code of a graph $G = (V, E)$ (Karpovskiy et al. 1998 [2])

subset C of V such that:

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets: $N[u] \cap C \neq N[v] \cap C$
Definition: identifying code of a graph $G = (V, E)$ (Karpovsky et al. 1998 [2])

subset C of V such that:

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets:

 $N[u] \cap C \neq N[v] \cap C$

Remark

Note: close to locating-dominating sets (Slater, Rall 84 [4])
Definition: identifying code of a graph $G = (V, E)$
(Karpovsky et al. 1998 [2])

subset C of V such that:

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets:
 $N[u] \cap C \neq N[v] \cap C$

Remark

Note: close to locating-dominating sets (Slater, Rall 84 [4])

Notation

$\gamma_{id}(G)$: minimum cardinality of an identifying code in a graph G
Remark: not all graphs admit an identifying code

u and v are twin vertices if $N[u] = N[v]$.
A graph is identifiable iff it has no twin vertices.
Identifiable graphs

Remark: not all graphs admit an identifying code.

* u and v are *twin* vertices if $N[u] = N[v]$.

A graph is *identifiable* iff it has no twin vertices.

Non-identifiable graphs

[Diagram showing non-identifiable graph]
Remark: not all graphs admit an identifying code

\(u \) and \(v \) are twin vertices if \(N[u] = N[v] \).

A graph is identifiable iff it has no twin vertices.

Non-identifiable graphs

![Diagram of non-identifiable graphs](image-url)
Lower bound and maximum degree

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices. Then

$$
\gamma_{id}(G) \geq \lceil \log_2(n + 1) \rceil.
$$
Lower bound and maximum degree

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices. Then

$$\gamma_{id}(G) \geq \lceil \log_2(n + 1) \rceil.$$

Characterization

The graphs reaching this bound have been characterized (Moncel 06 [3]).
Lower bound and maximum degree

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices. Then

$$\gamma_{id}(G) \geq \lceil \log_2(n + 1) \rceil.$$

Characterization

The graphs reaching this bound have been characterized (Moncel 06 [3])

Thm (Karpovski et al. 98 [2])

Let G be an identifiable graph with n vertices and maximum degree Δ. Then

$$\gamma_{id}(G) \geq \frac{2n}{\Delta + 2}.$$
Graphs reaching the lower bound

Characterization

- n vertices
- Independent set C of size $\frac{2n}{\Delta + 2}$ (id. code)
- Every vertex of C has exactly Δ neighbours
- $\frac{\Delta n}{\Delta + 2}$ vertices connected to exactly 2 code vertices each
Example: $D=$Petersen graph, $\Delta = 3$, $n = 10$
Graphs reaching the lower bound - example

Example: $D=$Petersen graph, $\Delta = 3, n = 10$
Example: $D=$Petersen graph, $\Delta = 3$, $n = 10$
A general upper bound

Thm (Gravier, Moncel 07 [1])

Let G be an identifiable connected graph with $n \geq 3$ vertices. Then $\gamma_{id}(G) \leq n - 1$.

F. Foucaud (U. Bordeaux 1)

Bounds on id codes

September 2009
A general upper bound

Thm (Gravier, Moncel 07 [1])

Let G be an identifiable connected graph with $n \geq 3$ vertices. Then $\gamma_{id}(G) \leq n - 1$.

Thm (Gravier, Moncel 07 [1])

For all $n \geq 3$, there exist identifiable graphs with n vertices with $\gamma_{id}(G) = n - 1$.
Example: the star $K_{1,n-1}$
Upper bound - example

Example: the star $K_{1,n-1}$
Remark

All these graphs have a high maximum degree $\Delta(G) : n - 1$ or $n - 2$.
Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected identifiable graph of maximum degree Δ. Then $\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^4)}$.
If G is regular, $\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^2)}$.
Result - general case

Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected identifiable graph of maximum degree Δ. Then $\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^4)}$. If G is regular, $\gamma_{id}(G) \leq n - \frac{n}{\Theta(\Delta^2)}$.

Sketch of the proof

- Greedily construct a 4-independant (resp. 2-independent) set S: distance between two vertices is at least 5 (resp. 3)
- take $C = V \setminus S$ as a code
- C must be modified locally
Take any Δ-regular graph H with m vertices
replace any vertex of H by a clique of Δ vertices
Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Example: $H = K_4$
Connected cliques

- Take any Δ-regular graph H with m vertices
- Replace any vertex of H by a clique of Δ vertices

Exemple : $H = K_4$
Take any Δ-regular graph H with m vertices

replace any vertex of H by a clique of Δ vertices

Exemple : $H = K_4$

For every clique, at least $\Delta - 1$ vertices in the code

$\Rightarrow \gamma_{id}(G) \geq m \cdot (\Delta - 1) = n - \frac{n}{\Delta}$
Proposition

Let $K_{m,m}$ be the complete bipartite graph with $n = 2m$ vertices.

$id(K_{m,m}) = 2m - 2 = n - \frac{n}{\Delta}.$
Proposition

Let $K_{m,m}$ be the complete bipartite graph with $n = 2m$ vertices.

$$id(K_{m,m}) = 2m - 2 = n - \frac{n}{\Delta}.$$

Thm (Bertrand et al. 05)

Let T^h_k be the k-ary tree with h levels and n vertices.

$$id(T^h_k) = \left\lceil \frac{k^2 n}{k^2 + k + 1} \right\rceil = n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}.$$
Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected triangle-free identifiable graph G with $n \geq 3$ vertices and maximum degree Δ. Then $\gamma_{id}(G) \leq n - \frac{n}{3\Delta + 3}$.

If G is regular, $\gamma_{id}(G) \leq n - \frac{n}{2\Delta + 2}$.
Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be a connected triangle-free identifiable graph G with $n \geq 3$ vertices and maximum degree Δ. Then $\gamma_{id}(G) \leq n - \frac{n}{3\Delta+3}$.
If G is regular, $\gamma_{id}(G) \leq n - \frac{n}{2\Delta+2}$.

Sketch of the proof

- Greedily construct an independent set S with special properties: $|S| \geq \frac{n}{\Delta+1}$
- Take $C = V \setminus S$ as a code
- Some vertices may not be identified correctly
- \rightarrow locally modify C. It is possible to add not too much vertices to C
Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be an identifiable graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$.
Then $\gamma_{id}(G) \leq \frac{7n}{8} + 1$.
Thm (F., Klasing, Kosowski and Raspaud 09)

Let G be an identifiable graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$. Then $\gamma_{id}(G) \leq \frac{7n}{8} + 1$.

Sketch of the proof

- Construct a DFS spanning tree T of G
- Partition the vertices into 4 classes V_0, V_1, V_2, V_3 depending on their level in T
- Take $C = V \setminus V_i$ as a code, $|V_i| \geq \frac{n}{4}$: $|V_i| \leq \frac{3n}{4}$
- C must be modified locally; the size of C might increase
Graphs of girth at least 5

level 0
level 1
level 2
level 3
level 4
level 5
level 6
Summary

<table>
<thead>
<tr>
<th></th>
<th>arbitrary graphs</th>
<th>Δ-regular graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>arbitrary graphs</td>
<td>$\left< n - \frac{n}{\Delta}, n - \frac{n}{\Theta(\Delta^4)} \right>$</td>
<td>$\left< n - \frac{n}{\Delta}, n - \frac{n-1}{\Delta^2} \right>$</td>
</tr>
<tr>
<td>triangle-free graphs</td>
<td>$\left< n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}, n - \frac{n}{3\Delta + 3} \right>$</td>
<td>$\left< n - \frac{n}{2\Delta + 2}, n - \frac{n}{2\Delta + 2} \right>$</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>arbitrary graphs</th>
<th>(\Delta)-regular graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>arbitrary graphs</td>
<td>(\langle n - \frac{n}{\Delta}, n - \frac{n}{\Theta(\Delta^4)} \rangle)</td>
<td>(\langle n - \frac{n}{\Delta}, n - \frac{n-1}{\Delta^2} \rangle)</td>
</tr>
<tr>
<td>triangle-free graphs</td>
<td>(\langle n - \frac{n}{\Delta-1 + \frac{1}{\Delta}}, n - \frac{n}{3\Delta + 3} \rangle)</td>
<td>(\langle n - \frac{n}{\frac{2\Delta}{3}}, n - \frac{n}{2\Delta + 2} \rangle)</td>
</tr>
<tr>
<td>minimum degree (\delta \geq 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>graphs of girth</td>
<td>(\langle \frac{3n}{5}, \frac{7n}{8} + 1 \rangle)</td>
<td></td>
</tr>
<tr>
<td>at least 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sylvain Gravier and Julien Moncel.
On graphs having a $V\setminus\{x\}$ set as an identifying code.

Algebraic and Topological Methods in Graph Theory.

Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin.
On a new class of codes for identifying vertices in graphs.

Julien Moncel.
On graphs on n vertices having an identifying code of cardinality $\log_2(n + 1)$.

P. J. Slater and D. F. Rall.
On location–domination numbers for certain classes of graphs.